精英家教网 > 高中数学 > 题目详情
12.计算:
sin30°+sin(30°+120°)+sin(30°+240°),
sin60°+sin(60°+120°)+sin(60°+240°).
观察以上两式及其结果的特点,请写出一个一般的等式,使得上述两式为它的一个特例,并证明你写的结论.

分析 利用特殊角的三角函数进行计算,借助于和(差)角的三角函数公式进行证明即可.

解答 解:sin30°+sin(30°+120°)+sin(30°+240°)=$\frac{1}{2}+\frac{1}{2}$-1=0,
sin60°+sin(60°+120°)+sin(60°+240°)=$\frac{\sqrt{3}}{2}-\frac{\sqrt{3}}{2}$=0.
一般的等式:sinα+sin(α+120°)+sin(α+240°)=0
证明:左边=sinα+sin(α-120°)+sin(α+240°)=sinα-$\frac{1}{2}$sinα+$\frac{\sqrt{3}}{2}$cosα-$\frac{1}{2}$sinα-$\frac{\sqrt{3}}{2}$cosα=0

点评 本题考查归纳推理,考查三角函数知识,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知f(x)在R上是偶函数,且满足f(4-x)=f(x),若x∈(0,2)时,f(x)=2x2,则f(7)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.点P(x0,y0)在直线l:f(x,y)=0外,则l1:f(x,y)+f(x0,y0)=0与l2:f(-y,x)+f(x0,y0)=0的位置关系是(  )
A.平行B.垂直C.平行或重合D.相交且不垂直

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}的前n项和为Sn,Sn=$\frac{1}{3}$(an-1)(n∈N*).
(1)求a1,a2的值;
(2)证明数列{an}是等比数列,并求Sn

查看答案和解析>>

科目:高中数学 来源:2016-2017学年安徽豪州蒙城县一中高二上月考一数学试卷(解析版) 题型:选择题

等比数列的第四项等于( )

A.-24 B.0 C.12 D.24

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,已知内角A,B,C所对的边分别为a,b,c,向量$\overrightarrow{m}$=($\sqrt{3}$,-2sinB),$\overrightarrow{n}$=(2cos2$\frac{B}{2}$-1,cos2B),且$\overrightarrow{m}$∥$\overrightarrow{n}$,B为锐角,b=2,则△ABC面积S△ABC的最大值为(  )
A.1B.2C.$\sqrt{3}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设f(x)的定义域为[-3,3],且f(x)是奇函数.当x∈[0,3]时,f(x)=x(1-3x),
(1)求当x∈[-3,0)时,f(x)的解析式;
(2)解不等式f(x)<-8x.
(3)记P={x|y=f(x-c)},Q={x|y=f(x-c2)},若P∩Q=∅,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数y=$\left\{\begin{array}{l}{{3}^{x-1}-2\\;x≤1}\\{{3}^{1-x}-2\\;x>1}\end{array}\right.$的值域是(-2,-1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在[0,2π]上,正弦函数、余弦函数同为减函数的区间是[$\frac{π}{2}$,π].

查看答案和解析>>

同步练习册答案