精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=ax2+2ax+1.x∈[-3,2]的最大值为4.求其最小值.

分析 求出二次函数的对称轴,对a=0和a<0两类,求出函数的最值.

解答 解:当a=0时,f(x)=1与已知不符.
当a≠0时,f(x)的图象为对称轴是x=-1的抛物线上的一段.
当a<0时,4=f(-1)=-a+1.
∴a=-3,
此时最小值为f(2)=-23.
当a>0时,4=f(2)=8a+1,
∴a=$\frac{3}{8}$,此时最小值为f(-1)=$\frac{5}{8}$.

点评 本题考查二次函数最值的求法,解题的关键是根据二次函数的对称轴与区间的位置关系判断出函数的单调性,从而确定出函数的最值在何处取到.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.y=$\frac{3+x+{x}^{2}}{1+x}$(x>-1)的最小值是2$\sqrt{3}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.要得到函数y=3sin(2x+$\frac{π}{3}$)的图象,只需将y=3sin2x图象上所有的点(  )
A.向左平行移动$\frac{π}{3}$个单位长度B.向右平行移动$\frac{π}{3}$个单位长度
C.向左平行移动$\frac{π}{6}$个单位长度D.向右平行移动$\frac{π}{6}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.甲、乙、丙三人进行射击比赛,在一轮比赛中,甲、乙丙各射击一发子弹,根据以往统计资料知,甲击中9环、10环的概率分别为0.3、0.2,乙中击中9环、10环的概率分别为0.4、0.3,丙击中9环、10环的概率分别为0.6、0.4,设甲、乙、丙射击相互独立,求:
(1)丙击中的环数不超过甲击中的环数的概率;
(2)求在一轮比赛中,甲、乙击中的环数都没有超过丙击中的环数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若命题“?x∈R使ax2-2ax-3>0”是假命题,则实数a的取值范围是[-3,0].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数y=sin(πx+φ)-2cos(πx+φ)(0<φ<π)的图象关于直线x=1对称,则sin2φ=(  )
A.$-\frac{4}{5}$B.$-\frac{3}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在正方体ABCD-A1B1C1D1的棱长为a,E为棱AB上的一动点.
(1)若E为棱AB的中点,
①求四棱锥B1-BCDE的体积   
②求证:面B1DC⊥面B1DE
(2)若BC1∥面B1DE,求证:E为棱AB的中点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列命题中,真命题是(  )
A.“?x∈R,x2≥x”的否定为“?x∉R,x2≥x”
B.命题“若x=1,则x2=1”逆命题
C.“若$\sqrt{3}x(x≠0)$是有理数,则x为无理数”的逆否命题
D.“x<-1”是“x2-1>0”的必要不充分条件条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列命题中为真命题的是(  )
A.命题“若x>1,则x2>1”的否命题
B.命题“若x>y,则|x|>y”的逆命题
C.若k<5,则两椭圆$\frac{x^2}{9}+\frac{y^2}{5}=1$与$\frac{x^2}{9-k}+\frac{y^2}{5-k}=1$有不同的焦点
D.命题“若方程x2+ky2=2表示焦点在y轴上的椭圆,则k的取值范围为(0,1)”的逆否命题

查看答案和解析>>

同步练习册答案