精英家教网 > 高中数学 > 题目详情
18.已知实数x,y满足x+y-4=0,则x2+y2的最小值为8.

分析 由条件利用二次函数的性质,求得x2+y2的最小值.

解答 解:由实数x,y满足x+y-4=0,则x2+y2 =x2+(4-x)2 =2x2-8x+16=2•(2-x)2+8,
故当x=2时,函数x2+y2 取得最小值为8,
故答案为:8.

点评 本题主要考查二次函数的性质的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知椭圆C1:$\frac{{x}^{2}}{{{a}_{1}}^{2}}$+$\frac{{y}^{2}}{{{b}_{1}}^{2}}$=1(a1>b1>0)与双曲线C2:$\frac{{x}^{2}}{{{a}_{2}}^{2}}$-$\frac{{y}^{2}}{{{b}_{2}}^{2}}$=1(a2>0,b2>0)有相同的焦点F1,F2,设椭圆的离心率为e1,双曲线的离心率为e2,O为坐标原点,P是两曲线的公共点,且∠F1PF2=60°,则$\frac{{e}_{1}{e}_{2}}{\sqrt{3{{e}_{1}}^{2}+{{e}_{2}}^{2}}}$的值为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=loga$\frac{1-mx}{x-1}$,(a>0且a≠1)是奇函数
(1)求m的值;
(2)讨论f(x)在(1,+∞)上的单调性,并用单调性的定义加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知三个互不相等的整数x、y、z之和在区间(40,44)内,若x、y、z依次构成公差为d的等差数列,x+y,y+z,z+x依次构成公比为q的等比数列,则d•q的值为42.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求下列函数的定义域.
(1)y=tan(3x+$\frac{π}{4}$)   
(2)y=$\sqrt{2sinx-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若关于x的不等式|x-1|+2|x+2|≤a在[-4,4]上有解,则实数a的取值范围是[3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知x>1,且x+x-1=11,求${x}^{\frac{1}{2}}$-${x}^{-\frac{1}{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设向量$\overrightarrow{a}$=(-1,1),$\overrightarrow{b}$=(4,1),$\overrightarrow{c}$=(cosθ,λsinθ)(λ∈R).
(1)设$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为α,求tanα;
(2)若(2$\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{c}$的最大值$\sqrt{5}$,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在底面是正方形的长方体ABCD-A1B1C1D1中,MN是在平面ACCA${\;}_1^{\;}$内,且MN⊥AC,则MN和BB1的位置关系是平行.

查看答案和解析>>

同步练习册答案