精英家教网 > 高中数学 > 题目详情

【题目】2010-2018年之间,受益于基础设施建设对光纤产品的需求,以及个人计算机及智能手机的下一代规格升级,电动汽车及物联网等新机遇,连接器行业增长呈现加速状态.根据该折线图,下列结论正确的个数为( )

①每年市场规模量逐年增加;

②增长最快的一年为2013~2014;

③这8年的增长率约为40%;

④2014年至2018年每年的市场规模相对于2010年至2014年每年的市场规模,数据方差更小,变化比较平稳

A. 1B. 2C. 3D. 4

【答案】C

【解析】

由题意观察所给的折线图考查所给的结论是否正确即可.

考查所给的结论:

2011-2012年的市场规模量有所下降,该说法错误;

②增长最快的一年为20132014,该说法正确;

③这8年的增长率约为40%,该说法正确;

2014年至2018年每年的市场规模相对于2010年至2014年每年的市场规模,数据方差更小,变化比较平稳,该说法正确.

综上可得:正确的结论有3.

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】用0与1两个数字随机填入如图所示的5个格子里,每个格子填一个数字,并且从左到右数,不管数到哪个格子,总是1的个数不少于0的个数,则这样填法的概率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为椭圆E 的左、右顶点, E的两个焦点与E的短轴两个端点所构成的四边形是正方形.

1)求椭圆E的方程;

2)设动点),记直线E的交点(不同于)到x轴的距离分别为,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平行四边形OABC中,过点C的直线与线段OA、OB分别相交于点M、N,若;(1)求y关于x的函数解析式;(2)定义函数,点列Pi(xi,F(xi))(i=1,2,…,n,n2)在函数y=F(x)的图象上,且数列{xn}是以1为首项,0.5为公比的等比数列,O为原点,令,是否存在点Q(1,m),使得?若存在,求出Q点的坐标,若不存在,说明理由;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的参数方程为为参数),以坐标原点为极点, 轴的非负半轴为极轴建立极坐标系,圆的极坐标方程为,直线与圆交于 两点.

(1)求圆的直角坐标方程及弦的长;

(2)动点在圆上(不与 重合),试求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点在以为直径的圆上,垂直与圆所在平面,的垂心.

(1)求证:平面平面

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若一个函数当自变量在不同范围内取值时,函数表达式不同,我们称这样的函数为分段函数.下面我们参照学习函数的过程与方法,探究分段函数的图象与性质.列表:

x

0

1

2

3

y

1

2

1

0

1

2

描点:在平面直角坐标系中,以自变量x的取值为横坐标,以相应的函数值y为纵坐标,描出相应的点,如图所示.

1)如图,在平面直角坐标系中,观察描出的这些点的分布,作出函数图象;

2)研究函数并结合图象与表格,回答下列问题:

①点在函数图象上,      ;(填

②当函数值时,求自变量x的值;

③在直线的右侧的函数图象上有两个不同的点,且,求的值;

④若直线与函数图象有三个不同的交点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知下列命题:

①在某项测量中,测量结果服从正态分布,若内取值范围概率为,则内取值的概率为

②若为实数,则“”是“”的充分而不必要条件;

③已知命题,则是:

中,“角成等差数列”是“”的充分不必要条件;其中,所有真命题的个数是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的偶函数f(x)满足f(x+1)=-f(x)且f(x)在[-1,0]上是增函数,给出下列四个命题:

f(x)是周期函数;②f(x)的图象关于x=1对称;③f(x)在[1,2]上是减函数;④f(2)=f(0).

其中正确命题的序号是____________.(请把正确命题的序号全部写出来)

查看答案和解析>>

同步练习册答案