精英家教网 > 高中数学 > 题目详情

如图,已知四棱锥中,平面,底面是直角梯形,

.

(1)求证:平面

(2)求证:平面

(3)若的中点,求三棱锥的体积.

 

(1)证明过程详见解析;(2)证明过程详见解析;(3).

【解析】

试题分析:本题主要以四棱锥为几何背景,考查线面平行、线面垂直以及三棱锥的体积等基础知识,考查学生的空间想象能力、逻辑推理能力、转化能力、计算能力.第一问,利用ABCD为直角梯形,所以得到AB//CD,利用线面平行的判定,得AB//平面PCD;第二问,在三角形ABC中,先利用余弦定理求出AC边长,再根据勾股定理判断,而,利用线面垂直的判定,平面PAC;第三问,由于平面ADC,所以M到平面ADC的距离为PA的一半,将转化为,作,在三角形ACB中,解出AE和CE的值,即AD和DC的值,即可得到直角三角形ADC的面积,从而利用三棱锥的体积公式计算体积.

试题解析:(1)底面是直角梯形,且,

, 1分

平面 2分

平面 3分

∥平面 4分

(2)

5分

6分

平面平面

7分

8分

平面 9分

(3)在直角梯形中,过于点

则四边形为矩形, 10分

中可得

11分

中点,

到面的距离是到面距离的一半 12分

14分

考点:线面平行、线面垂直以及三棱锥的体积.

 

练习册系列答案
相关习题

科目:高中数学 来源:2013-2014学年广东省广州市毕业班综合测试二文科数学试卷(解析版) 题型:选择题

下列函数中,既是偶函数又在上单调递增的是( )

A. B. C. D.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年广东省东莞市高三第二次模拟考试文科数学试卷(解析版) 题型:选择题

如图是年元旦晚会举办的挑战主持人大赛上,七位评委为某选手打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的方差为( )

A. B. C. D.

 

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年广东省东莞市高三模拟(一)理科数学试卷(解析版) 题型:填空题

某中学为了解学生数学课程的学习情况,在3 000名学生中随机抽取200名,并统计这200名学生的某次数学考试成绩,得到了样本的频率分布直方图(如图).根据频率分布直方图推测,这3 000名学生在该次数学考试中成绩小于60分的学生数是________.

 

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年广东省东莞市高三模拟(一)理科数学试卷(解析版) 题型:选择题

,若,则下列不等式中正确的是( )

A. B. C. D.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年广东省东莞市高三模拟(一)文科数学试卷(解析版) 题型:填空题

如图,有一个形如六边形的点阵,它的中心是一个点(算第1层),第2层每边有两个点,第3层每边有三个点,依次类推.

(1)试问第的点数为___________个;

(2)如果一个六边形点阵共有169个点,那么它一共有_____层.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年广东省东莞市高三模拟(一)文科数学试卷(解析版) 题型:选择题

定义某种运算,运算原理如上图所示,则式子的值为( )

A.4 B.8 C.11 D.13

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年山东省青岛市高三4月统一质量检测考试理科数学试卷(解析版) 题型:选择题

已知偶函数满足,且当时,,则关于的方程上根的个数是( )

A. 个 B. 个 C. 个 D.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年山东省高三12月月考理科数学试卷(解析版) 题型:选择题

对任意实数a,b定义运算如下,则函数 的值域为 ( )

A. B. C. D.

 

查看答案和解析>>

同步练习册答案