设A是单位圆上任意一点,是过点与轴垂直的直线,是直线与轴的交点,点在直线上,且满足,当点在圆上运动时,记点的轨迹为曲线。
(1)求曲线的方程,判断曲线为何种圆锥曲线,并求其焦点坐标。
(2)过原点斜率为的直线交曲线于两点,其中在第一象限,且它在轴上的射影为点,直线交曲线于另一点,是否存在,使得对任意的,都有?若存在,请说明理由。
(1)两焦点坐标分别为,
(2)
【解析】本题主要考察求曲线的轨迹方程、直线与圆锥曲线的位置关系,要求能正确理解椭圆的标准方程及其几何性质,并能熟练运用代数方法解决几何问题,对运算能力有较高要求。
(Ⅰ)如图1,设,,则由,
可得,,所以,. ①
因为点在单位圆上运动,所以. ②
将①式代入②式即得所求曲线的方程为.
因为,所以当时,曲线是焦点在轴上的椭圆,两焦点坐标分别为,;当时,曲线是焦点在轴上的椭圆,两焦点坐标分别为,.
(Ⅱ)解法1:如图2、3,,设,,则,,
直线的方程为,将其代入椭圆的方程并整理可得
.
依题意可知此方程的两根为,,于是由韦达定理可得,即.因为点H在直线QN上,所以.
于是,.
而等价于,即,又,得,
故存在,使得在其对应的椭圆上,对任意的,都有.
解法2:如图2、3,,设,,则,,
因为,两点在椭圆上,所以 两式相减可得
. ③
依题意,由点在第一象限可知,点也在第一象限,且,不重合,
故. 于是由③式可得
. ④
又,,三点共线,所以,即.
于是由④式可得.
而等价于,即,又,得,
故存在,使得在其对应的椭圆上,对任意的,都有.
【点评】本题考查椭圆的标准方程,直线与圆锥曲线的位置关系;考查分类讨论的数学思想以及运算求解的能力.本题是一个椭圆模型,求解标准方程时注意对焦点的位置分类讨论,不要漏解;对于探讨性问题一直是高考考查的热点,一般先假设结论成立,再逆推所需要求解的条件,对运算求解能力和逻辑推理能力有较高的要求.
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
设A是单位圆x2+y2=1上任意一点,l是过点A与x轴垂直的直线,D是直线l与x轴的交点,点M在直线l上,且满足当点A在圆上运动时,记点M的轨迹为曲线C。
(1)求曲线C的方程,判断曲线C为何种圆锥曲线,并求其焦点坐标。
(2)过原点斜率为K的直线交曲线C于P,Q两点,其中P在第一象限,且它在y轴上的射影为点N,直线QN交曲线C于另一点H,是否存在m,使得对任意的K>0,都有PQ⊥PH?若存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源:2012-2013学年广东省佛山市顺德区高二(上)期末数学试卷(理科)(解析版) 题型:解答题
查看答案和解析>>
科目:高中数学 来源:2012年湖北省高考数学试卷(理科)(解析版) 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com