精英家教网 > 高中数学 > 题目详情
13.数字1,2,3,4任意排成一列,如果数字k恰好出现在第k个位置上,则称有一个巧合,求巧合数X的分布列.

分析 设ξ为巧合数,则ξ的可能取值是0、1、2、3、4,分别求出相应的概率,由此能求出ξ的分布列.

解答 解:设ξ为巧合数,则ξ的可能取值是0、1、2、3、4,
当ξ=0时表示没有巧合数,试验包含的所有事件是四个数在四个位置排列,共有A44种结果,
而满足条件的事件是没有巧合数,共有3×3种结果,类似的可以做出其他的概率,
则P(ξ=0)=$\frac{9}{{A}_{4}^{4}}$=$\frac{9}{24}$=$\frac{3}{8}$,
P(ξ=1)=$\frac{{C}_{4}^{1}×2}{{A}_{4}^{4}}$=$\frac{1}{3}$,
P(ξ=2)=$\frac{{C}_{4}^{2}}{{A}_{4}^{4}}$=$\frac{1}{4}$,
P(ξ=3)=0,
P(ξ=4)=$\frac{{C}_{4}^{4}}{{A}_{4}^{4}}$=$\frac{1}{24}$,
∴ξ的分布列为:

 ξ 0 1 2 3 4
 P $\frac{3}{8}$ $\frac{1}{3}$ $\frac{1}{4}$ 0 $\frac{1}{24}$

点评 本题考查离散型随机变量的分布列的求法,是中档题,解题时要认真审题,注意排列组合知识的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知△ABC中的三个顶点坐标分别为A(4,6),B(-2,0),C(0,-2),若圆x2+y2=r2上的所有点都在△ABC内(包括边界),则该圆的面积的最大值是(  )
A.B.$\frac{4}{5}$πC.$\sqrt{2}$πD.$\frac{2\sqrt{2}}{5}$π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.有一面足够长的墙,现用一36米长的篱笆围成如图所示的四个面积相等的猪圈,那么猪圈的最大总面积为$\frac{324}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-2x,x≤2}\\{lo{g}_{a}x-\frac{1}{2},x>2}\end{array}\right.$的值域为实数集R,则f(2$\sqrt{2}$)的取值范围是[-$\frac{5}{4}$,-$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数y=2sin$\frac{x}{4}$cos$\frac{x}{4}$+$\sqrt{3}$cos$\frac{x}{2}$的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如果对数函数y=logax的图象经过点P($\frac{1}{8}$,3),则底a=(  )
A.2B.-2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知△ABC的顶点A(0,1),AB边上的高CD所在的直线方程为x+y-2=0,AC边上的中线BM所在的直线的方程为:3x+y-5=0.求△ABC的顶点B、C的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=lnx,g(x)=ex,其中e是自然对数的底数,e=2.71828…
(1)若函数φ(x)=f(x)-$\frac{x+1}{x-1}$,求函数φ(x)的单调区间;
(2)若x≥0,g(x)≥kf(x+1)+1恒成立,求实数k的取值范围;
(3)设直线l为函数f(x)的图象上一点,A(x0,f(x0))处的切线,证明:在区间(1,+∞)上存在唯一的x0,使得直线l与曲线y=g(x)相切.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知直线2x-2y-1=0与抛物线C:x2=2py(p>0)相切.
(1)求p的值;
(2)过点M(0,1)作直线l与抛物线C交于A,B两点,抛物线C在A,B两点处的切线分别为l1,l2,直线l1,l2交于点P,求点P的轨迹方程.

查看答案和解析>>

同步练习册答案