精英家教网 > 高中数学 > 题目详情

【题目】已知函数

1)当函数存在零点时,求的取值范围;

2)讨论函数在区间内零点的个数.

【答案】12)当在区间上没有零点;当时,上只有1个零点;当时,在区间上有2个零点.

【解析】

1)将问题转化为一元二次方程有根的问题,根据进行计算;

2)根据二次函数的对称轴,以及的正负,结合零点存在定理,对参数进行分类讨论即可.

1)因为函数有零点,

所以方程有实数根.

所以,解得,或

因此,所求的取值范围是,或.

2)由题意可知的对称轴为

由(1)知:①当时,

内没有零点;

②当时,对称轴,

上单调递增.

又因为,故在区间恒成立,

在区间上没有零点;

③当时,=,则函数零点为

在区间上只有一个零点;

④当时,对称轴,且

又因为

时,即时,由零点存在定理得

函数在区间上只有1个零点,

,且,即时,

上有2个零点,

,且,即

不存在此类情况.

综上所述:

在区间上没有零点;

时,上只有1个零点;

时,在区间上有2个零点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为预防病毒爆发,某生物技术公司研制出一种新流感疫苗,为测试该疫苗的有效性(若疫苗有效的概率小于%,则认为测试没有通过),公司选定个流感样本分成三组,测试结果如下表:

疫苗有效

疫苗无效

已知在全体样本中随机抽取个,抽到组疫苗有效的概率是

(Ⅰ)求的值;

(Ⅱ)现用分层抽样的方法在全体样本中抽取个测试结果,问应在组抽取多少个?

(Ⅲ)已知,求不能通过测试的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=loga(x+1)-loga(1-x),a>0a≠1.

(1)f(x)的定义域;

(2)判断f(x)的奇偶性并予以证明;

(3)a>1,求使f(x)>0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆的离心率为,其左焦点到点的距离为,不过原点O的直线C交于A,B两点,且线段AB被直线OP平分.

1)求椭圆C的方程;

2)求k的值;

3)求面积取最大值时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,都是边长为2的等边三角形,设在底面的射影为.

(1)求证:中点;

(2)证明:

(3)求点到面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥中,平面的中点.

(1)证明:平面

(2)设二面角,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知国家某级大型景区对拥挤等级与每日游客数量(单位:百人)的关系有如下规定:当时,拥挤等级为;当时,拥挤等级为;当时,拥挤等级为拥挤;当时,拥挤等级为严重拥挤.该景区对6月份的游客数量作出如图的统计数据:

(1)下面是根据统计数据得到的频率分布表,求出的值,并估计该景区6月份游客人数的平均值(同一组中的数据用该组区间的中点值作代表);

游客数量(单位:百人)

天数

10

4

1

频率

2)某人选择在61日至65日这5天中任选2天到该景区游玩,求他这2天遇到的游客拥挤等级均为的频率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是边长为2的菱形,底面.

1)求证:平面

2)若,直线与平面所成的角为,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C:过点,左右焦点为,且椭圆C关于直线对称的图形过坐标原点。

(I)求椭圆C方程;

(II)圆D:与椭圆C交于A,B两点,R为线段AB上任一点,直线F1R交椭圆C于P,Q两点,若AB为圆D的直径,且直线F1R的斜率大于1,求的取值范围.

查看答案和解析>>

同步练习册答案