精英家教网 > 高中数学 > 题目详情

【题目】已知平面向量=(1x),=(2x+3,-x),xR.

1)若,求x的值;

2)若,求|-|的值.

【答案】1.(2

【解析】

1)由得其数量积等于0,从而列出关于x的方程,解方程可得x的值;

2)由,得1×(-x)-x(2x+3)=0,解出x的值,可求出的坐标,从而可求出其模.

1)若,则·=(1x)·(2x+3,-x)=1×(2x+3)+x(-x)=0

整理得x2-2x-3=0,解得x=-1x=3.

2)若,则有1×(-x)-x(2x+3)=0

x(2x+4)=0,解得x=0x=-2.

x=0时,=(10),=(30),-=(-20),

∴|-|==2

x=-2时,=(1,-2),=(-12),-=(2,-4),

∴|-|==2

综上,可知|-|=22.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知F为抛物线Ep0)的焦点,C1)为E上一点,且|CF|=2.过F任作两条互相垂直的直线,分别交抛物线EPQMN两点,AB分别为线段PQMN的中点.

1)求抛物线E的方程及点C的坐标;

2)试问是否为定值?若是,求出此定值;若不是,请说明理由;

3)证明直线AB经过一个定点,求此定点的坐标,并求△AOB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】第18届国际篮联篮球世界杯将于2019年8月31日至9月15日在中国北京、广州等八座城市举行.届时,甲、乙、丙、丁四名篮球世界杯志愿者将随机分到三个不同的岗位服务,每个岗位至少有一名志愿者.

(1)求甲、乙两人不在同一个岗位服务的概率;

(2)设随机变量为这四名志愿者中参加岗位服务的人数,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某少数民族的刺绣有着悠久的历史,下图(1)(2)(3)(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形.

(1) 求出并猜测的表达式;

(2) 求证:+…+.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,用总长为定值l的篱笆围成长方形的场地,以墙为一边,并用平行于一边的篱笆隔开.

1)设场地面积为y,垂直于墙的边长为x,试用解析式将y表示成x的函数,并确定这个函数的定义域;

2)怎样围才能使得场地的面积最大?最大面积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年被称为“新高考元年”,随着上海、浙江两地顺利实施“语数外+3”新高考方案,新一轮的高考改革还将继续在全国推进。辽宁地区也将于2020年开启新高考模式,今年秋季入学 的高一新生将面临从物理、化学、生物、政治、历史、地理等6科中任选三科(共20种选法)作为 自己将来高考“语数外+3 ”新高考方案中的“3”。某地区为了顺利迎接新高考改革,在某学校理科班的200名学生中进行了“学生模拟选科数据”调查,每个学生只能从表格中的20种课程 组合选择一种学习。模拟选课数据统计如下表:

序号

1

2

3

4

5

6

7

组合学科

物化生

物化政

物化历

物化地

物生政

物生历

物生地

人数

20人

5人

10人

10人

10人

15人

10人

序号

8

9

10

11

12

13

14

组合学科

物政历

物政地

物历地

化生政

化生历

化生地

化政历

人数

5人

0人

5人

...

40人

...

...

序号

15

16

17

18

19

20

组合学科

化政地

化历地

生政历

生政地

生历地

政历地

总计

人数

...

...

...

...

...

...

200人

为了解学生成绩与学生模拟选课情之间的关系,用分层抽样的方法从这200名学生中抽取40人的样本进行分析.

(1)样本中选择组合12号“化生历”的有多少人?样本中选择学习物理的有多少人?

(2)从样本选择学习地理且学习物理的学生中随机抽取3人,求这3人中至少有1人还要学习生物的概率;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

在直角坐标系中,直线的参数方程为为参数),以原点为极点, 轴的正半轴为极轴,以相同的长度单位建立极坐标系,曲线的极坐标方程为.

(Ⅰ)求直线的极坐标方程和曲线的直角坐标方程;

(Ⅱ)已知,直线与曲线交于 两点,若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线与正切函数相邻两支曲线的交点的横坐标分别为 且有假设函数的两个不同的零点分别为 若在区间内存在两个不同的实数 调整顺序后构成等差数列的值为

A. B. C. 或不存在 D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某教育主管部门到一所中学检查高三年级学生的体质健康情况,从中抽取了名学生的体质测试成绩,得到的频率分布直方图如图1所示,样本中前三组学生的原始成绩按性别分类所得的茎叶图如图2所示.

(Ⅰ)求 的值;

(Ⅱ)估计该校高三学生体质测试成绩的平均数和中位数

(Ⅲ)若从成绩在的学生中随机抽取两人重新进行测试,求至少有一名男生的概率.

查看答案和解析>>

同步练习册答案