精英家教网 > 高中数学 > 题目详情
已知得顶点分别是离心率为的圆锥曲线的焦点,顶点在该曲线上,一同学已正确地推得,当时有 ,类似地,当时,有               .

试题分析:猜想
证明:当时,圆锥曲线为双曲线,设双曲线的焦距为,实轴为
,由正弦定理得,∴,∴恒成立.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,椭圆的右焦点为,离心率为
分别过的两条弦相交于点(异于两点),且
(1)求椭圆的方程;
(2)求证:直线的斜率之和为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆C:的左右焦点分别为F1,F2,P为椭圆上异于端点的任意的点,PF1,PF2的中点分别为M,N,O为坐标原点,四边形OMPN的周长为2,则△的周长是(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知分别是椭圆的左右焦点,过垂直与轴的直线交椭圆于两点,若是锐角三角形,则椭圆离心率的范围是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知双曲线的离心率为,顶点与椭圆的焦点相同,那么双曲线的焦点坐标为_____;渐近线方程为_________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

秒“嫦娥二号”探月卫星由长征三号丙运载火箭送入近地点高度约公里、远地点高度约万公里的直接奔月椭圆(地球球心为一个焦点)轨道Ⅰ飞行。当卫星到达月球附近的特定位置时,实施近月制动及轨道调整,卫星变轨进入远月面公里、近月面公里(月球球心为一个焦点)的椭圆轨道Ⅱ绕月飞行,之后卫星再次择机变轨进入以为圆心、距月面公里的圆形轨道Ⅲ绕月飞行,并开展相关技术试验和科学探测。已知地球半径约为公里,月球半径约为公里。
(Ⅰ)比较椭圆轨道Ⅰ与椭圆轨道Ⅱ的离心率的大小;
(Ⅱ)以为右焦点,求椭圆轨道Ⅱ的标准方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的方程为,其离心率为,经过椭圆焦点且垂直于长轴的弦长为3.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l:与椭圆C交于A、B两点,P为椭圆上的点,O为坐标原点,且满足,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的右焦点在圆上,直线交椭圆于两点.
(1)求椭圆的方程;
(2)若(为坐标原点),求的值;

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知焦点在轴上的椭圆的离心率是,则的值为 (  )
A. B.C.D.

查看答案和解析>>

同步练习册答案