精英家教网 > 高中数学 > 题目详情
已知二次函数f(x)=ax2+bx+c,满足f(0)=f(1)=0,且f(x)的最小值是
(1)求f(x)的解析式;
(2)设直线l:y=t2-t(其中0<t<,t为常数),若直线l与f(x)的图象以及y轴所围成封闭图形的面积是S1(t),直线l与f(x)的图象所围成封闭图形的面积是S2(t),设,当g(t)取最小值时,求t的值.
(3)已知m≥0,n≥0,求证:
【答案】分析:(1)利用已知条件选择待定系数法确定函数解析式是解决本题的关键,充分借助二次函数的对称性解决该问题可以事半功倍;
(2)利用定积分表示出所求的图形面积是解决本题的关键.得出关于t的函数关系,根据函数解析式的类型选择合适的方法求解该函数的最值,利用导数求解其最小值;
(3)利用均值不等式进行放缩是证明该不等式的关键,根据已知的函数可以得出关于m,n的不等式.
解答:解:(1)由二次函数图象的对称性,可设,又f(0)=0∴a=1
故f(x)=x2-x.
(2)据题意,直线l与f(x)的图象的交点坐标为(t,t2-t),由定积分的几何意义知
=
=
=

,或(不合题意,舍去)
,g(t)递减,,g'(t)≥0,g(t)递增,
故当时,g(t)有最小值.
(3)∵f(x)的最小值为
①+②得:

由均值不等式和③知:


点评:本题考查函数解析式的求解,考查二次函数的对称性.考查定积分求解曲边图形面积的思想和方法,导数求函数最值的工具作用.考查函数思想解决证明不等式问题、用到了均值定理进行放缩.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2+2(m-2)x+m-m2
(I)若函数的图象经过原点,且满足f(2)=0,求实数m的值.
(Ⅱ)若函数在区间[2,+∞)上为增函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c(a≠0)的图象过点(0,1),且与x轴有唯一的交点(-1,0).
(Ⅰ)求f(x)的表达式;
(Ⅱ)设函数F(x)=f(x)-kx,x∈[-2,2],记此函数的最小值为g(k),求g(k)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-16x+q+3.
(1)若函数在区间[-1,1]上存在零点,求实数q的取值范围;
(2)若记区间[a,b]的长度为b-a.问:是否存在常数t(t≥0),当x∈[t,10]时,f(x)的值域为区间D,且D的长度为12-t?请对你所得的结论给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州一模)已知二次函数f(x)=x2+ax+m+1,关于x的不等式f(x)<(2m-1)x+1-m2的解集为(m,m+1),其中m为非零常数.设g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值时,函数φ(x)=g(x)-kln(x-1)存在极值点,并求出极值点;
(3)若m=1,且x>0,求证:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知二次函数f(x)的图象与x轴的两交点为(2,0),(5,0),且f(0)=10,求f(x)的解析式.
(2)已知二次函数f(x)的图象的顶点是(-1,2),且经过原点,求f(x)的解析式.

查看答案和解析>>

同步练习册答案