【题目】已知函数f(x)=ln(ax+b)﹣x(a,b∈R,ab≠0).
(1)讨论f(x)的单调性;
(2)若f(x)≤0恒成立,求ea(b﹣1)的最大值.
【答案】(1)讨论见解析;(2)最大值为0
【解析】
(1)分时,时,两种情况讨论单调性.
(2)由(1)知:当时,取且时,,与题意不合,当时,由题目中恒成立可得,,得,所以,令,只需求即可.
(1)①当a>0时,则f(x)的定义域为(﹣,+∞),
=,由f′(x)=0,
得x=1﹣>﹣,
所以f(x)在(﹣,1﹣)单调递增,在(1﹣,+∞)单调递减,
②当a<0时,则f(x)的定义域为(﹣∞,﹣),
由f′(x)=0得x=1﹣>﹣,
所以f(x)在(﹣∞,﹣)单调递减.
综上:当a>0时,f(x)在(﹣,1﹣)单调递增,在(1﹣,+∞)单调递减.
当a<0时, f(x)在(﹣∞,﹣)单调递减.
(2)由(1)知:当a<0时,取x0<且x0<0时,
f(x0)>ln(a×+b)﹣x0>0,与题意不合,
当a>0时,f(x)max=f(1﹣)=lna﹣1+≤0,即b﹣1≤ a﹣alna﹣1,
所以ea(b﹣1)≤(a﹣alna﹣1)ea,令h(x)=(x﹣xlnx﹣1)ex,
则h′(x)=(x﹣xlnx﹣lnx﹣1)ex,
令u(x)=x﹣xlnx﹣lnx﹣1,则u′(x)=﹣lnx﹣,
则u″(x)=,
u′(x)在(0,1)上单调递增,在(1,+∞)上单调递减.
则u′(x)max=u′(1)<0,
从而u(x)在(0,+∞)单调递减,又因为u(1)=0.
所以当x∈(0,1)时,u(x)>0,即h′(x)>0;
当x∈(1,+∞)时,u(x)<0,即h′(x)<0,
则h(x)在(0,1)单调递增,在(1,+∞)单调递减,
所以h(x)max=h(1)=0.
所以ea(b﹣1)的最大值为0.
科目:高中数学 来源: 题型:
【题目】设有二元关系,已知曲线.
(1)若时,正方形的四个顶点均在曲线上,求正方形的面积;
(2)设曲线与轴的交点是,抛物线与轴的交点是,直线与曲线交于,直线与曲线交于,求证直线过定点,并求该定点的坐标;
(3)设曲线与轴的交点是,,可知动点在某确定的曲线上运动,曲线上与上述曲线在时共有4个交点,其坐标分别是、、、,集合的所有非空子集设为,将中的所有元素相加(若只有一个元素,则和是其自身)得到255个数,求所有正整数的值,使得是一个与变数及变数均无关的常数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,圆形纸片的圆心为,半径为,该纸片上的正方形的中心为,、、、为圆上点,,,,分别是以,,,为底边的等腰三角形,沿虚线剪开后,分别以,,,为折痕折起,,,,使得、、、重合,得到四棱锥.当该四棱锥体积取得最大值时,正方形的边长为______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点A(0,1),抛物线C:y2=ax(a>0)的焦点为F,连接FA,与抛物线C相交于点M,延长FA,与抛物线C的准线相交于点N,若|FM|:|MN|=1:2,则实数a的值为_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学生对函数的性质进行研究,得出如下的结论:
函数在上单调递减,在上单调递增;
点是函数图象的一个对称中心;
函数图象关于直线对称;
存在常数,使对一切实数x均成立,
其中正确命题的个数是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设为数列前项的和,,数列的通项公式.
(1)求数列的通项公式;
(2)若,则称为数列与的公共项,将数列与的公共项,按它们在原数列中的先后顺序排成一个新数列,求的值;
(3)是否存在正整数、、使得成立,若存在,求出、、;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com