精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
ax+1
在(-∞,1)上有意义,求实数a的取值范围.
考点:函数的定义域及其求法
专题:函数的性质及应用
分析:把函数f(x)=
ax+1
在(-∞,1)上有意义转化为对于任意x∈(-∞,1)恒有ax+1≥0成立,然后对a分类求解得答案.
解答: 解:由函数f(x)=
ax+1
在(-∞,1)上有意义,
则对于任意x∈(-∞,1)恒有ax+1≥0成立,
当a=0时显然满足;
当a≠0时,则
a<0
a×1+1≥0
,解得:-1≤a<0.
∴实数a的取值范围是[-1,0).
综上,实数a的范围是[-1,0].
点评:本题考查了函数的定义域及其求法,考查了数学转化思想方法,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
x2-2x-3≤0
|x-a|≤2

(1)当0<a<1时,求不等式的解;
(2)当x∈∅时,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的首项a1=
3
2
,前n项和为Sn,且满足2an+1+Sn=3(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求满足
18
17
S2n
Sn
8
7
的所有n的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2
sin(x+φ),0<φ<
π
2
,且f(0)=1.
(1)求φ的值及函数f(x)的单调递增区间;
(2)已知f(α-
π
4
)=
4
2
5
π
2
<α<π,f(β+
π
4
)=-
12
2
13
π
2
<β<π,求cos(α+β)值.

查看答案和解析>>

科目:高中数学 来源: 题型:

过两点A(m2+2,m2-4),B(3-m-m2,3m)的直线l的倾斜角为135°,则m=(  )
A、
5
3
B、-
5
3
C、
5
3
或-1
D、-1

查看答案和解析>>

科目:高中数学 来源: 题型:

本题共有2题,第1小题满分4分,第2小题满分2分
已知集合A={x||x-1|≤1},B={x|x≥a}.
(1)当a=1时,求集合A∩B;
(2)若A⊆B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是△ABC内一点,且
BA
+
BC
=6
BP
,则
S△ABP
S△ACP
=(  )
A、
1
2
B、
1
3
C、
1
4
D、
1
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(x,2,0),
b
=(3,2-x,x),且
a
b
的夹角为钝角,则x的取值范围是(  )
A、x<-4B、-4<x<0
C、0<x<4D、x>4

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线l1:(a-2)x+3y+a=0,l2:ax+(a-2)y-1=0互相垂直,则实数a的值为(  )
A、-3B、2或-3
C、2D、-2或3

查看答案和解析>>

同步练习册答案