【题目】已知函数(且).
(1)若函数在处取得极值,求实数的值;并求此时在上的最大值;
(2)若函数不存在零点,求实数的取值范围.
【答案】(1).
(2).
【解析】【试题分析】(1)求得函数定义域和函数导数,将代入函数的导数,利用导数值为解方程求得的值.再根据函数的单调性求出函数在区间上的最大值.(2)对函数求导后,对分成, 两类讨论函数的单调区间,利用不存在零点来求得的取值范围.
【试题解析】
解:(1)函数的定义域为, ,
,∴
在上, 单调递减,在上, 单调递增,
所以时取极小值.所以在上单调递增,在上单调递减;
又, , .
当时, 在的最大值为
(2)由于
①当时, , 是增函数,
且当时,
当时, ,
,取,则,
所以函数存在零点
②时, , .在上, 单调递减,
在上, 单调递增,
所以时取最小值. 解得
综上所述:所求的实数的取值范围是.
科目:高中数学 来源: 题型:
【题目】下面几种推理中是演绎推理的为( )
A. 由金、银、铜、铁可导电,猜想:金属都可导电
B. 猜想数列的通项公式为
C. 半径为的圆的面积,则单位圆的面积
D. 由平面直角坐标系中圆的方程为,推测空间直角坐标系中球的方程为
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,椭圆的短轴端点与双曲线的焦点重合,过点的直线与椭圆相交于、两点.
(1)求椭圆的方程;
(2)若以为直径的圆过坐标原点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知两直线l1:ax-by+4=0,l2:(a-1)x+y+b=0.求分别满足下列条件的a,b的值.
(1)直线l1过点(-3,-1),并且直线l1与l2垂直;
(2)直线l1与直线l2平行,并且坐标原点到l1,l2的距离相等.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数与(为常数)的图象在它们与坐标轴交点处的切线互相平行.
(1)若关于的不等式有解,求实数的取值范围;
(2)对于函数和公共定义域内的任意实数,我们把的值称为两函数在处的“瞬间距离”.则函数与的所有“瞬间距离”是否都大于2?请加以证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com