精英家教网 > 高中数学 > 题目详情

【题目】已知函数).

(1)若函数处取得极值,求实数的值;并求此时上的最大值;

(2)若函数不存在零点,求实数的取值范围.

【答案】(1).

(2).

【解析】试题分析】(1)求得函数定义域和函数导数,代入函数的导数,利用导数值为解方程求得的值.再根据函数的单调性求出函数在区间上的最大值.(2)对函数求导后,分成, 两类讨论函数的单调区间,利用不存在零点来求得的取值范围.

试题解析

解:(1)函数的定义域为

,∴

单调递减,在 单调递增,

所以取极小值.所以上单调递增,在上单调递减;

.

时, 的最大值为

(2)由于

①当时, 是增函数,

且当时,

时,

,取,则

所以函数存在零点

时, .在 单调递减,

单调递增,

所以取最小值. 解得

综上所述:所求的实数的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下面几种推理中是演绎推理的为( )

A. 由金、银、铜、铁可导电,猜想:金属都可导电

B. 猜想数列的通项公式为

C. 半径为的圆的面积,则单位圆的面积

D. 由平面直角坐标系中圆的方程为,推测空间直角坐标系中球的方程为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,椭圆的短轴端点与双曲线的焦点重合,过点的直线与椭圆相交于两点.

(1)求椭圆的方程;

(2)若以为直径的圆过坐标原点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合,若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两直线l1axby40l2(a1)xyb0.求分别满足下列条件的ab的值.

(1)直线l1过点(3,-1),并且直线l1l2垂直;

(2)直线l1与直线l2平行,并且坐标原点到l1l2的距离相等.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为常数)的图象在它们与坐标轴交点处的切线互相平行.

(1)若关于的不等式有解,求实数的取值范围;

(2)对于函数公共定义域内的任意实数,我们把的值称为两函数在处的瞬间距离”.则函数的所有瞬间距离是否都大于2?请加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三条直线两两平行且不共面,每两条直线确定一个平面,一共可以确定几个平面?如果三条直线相交于一点,它们最多可以确定几个平面?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)讨论的单调性;

(Ⅱ)若,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论函数的单调性;

(2)若时,恒成立,求实数的取值范围

查看答案和解析>>

同步练习册答案