精英家教网 > 高中数学 > 题目详情

【题目】某区工商局、消费者协会在号举行了以携手共治,畅享消费为主题的大型宣传咨询服务活动,着力提升消费者维权意识.组织方从参加活动的群众中随机抽取名群众,按他们的年龄分组:第,第,第,第,第,得到的频率分布直方图如图所示.

)若电视台记者要从抽取的群众中选人进行采访,求被采访人恰好在第组或第组的概率;

)已知第组群众中男性有人,组织方要从第组中随机抽取名群众组成维权志愿者服务队,求至少有两名女性的概率.

【答案】1;(2.

【解析】

)设第的频率为

组的频率为

所以被采访人恰好在第组或第组的概率为

)设第的频数,则

记第组中的男性为,女性为

随机抽取名群众的基本事件是:

其中至少有两名女性的基本事件是:

所以至少有两名女性的概率为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某单位为了解其后勤部门的服务情况,随机访问了40名其他部门的员工,根据这40名员工对后勤部门的评分情况,绘制了频率分布直方图如图所示,其中样本数据分组区间为.

1)求的值;

2)估计该单位其他部门的员工对后勤部门的评分的中位数;

3)以评分在的受访者中,随机抽取2人,求此2人中至少有1人对后勤部门评分在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《周髀算经》 是我国古代的天文学和数学著作。其中一个问题的大意为:一年有二十四个节气(如图),每个节气晷长损益相同(即物体在太阳的照射下影子长度的增加量和减少量相同).若冬至晷长一丈三尺五寸,夏至晷长一尺五寸(注:ー丈等于十尺,一尺等于十寸),则立冬节气的晷长为( )

A. 九尺五寸 B. 一丈五寸 C. 一丈一尺五寸 D. 一丈六尺五寸

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

从以下两个命题中任选一个进行证明:

时函数恰有一个零点;

时函数恰有一个零点;

如图所示当的图象“好像”只有一个交点,但实际上这两个函数有两个交点,请证明:当时,两个交点.

若方程恰有4个实数根,请结合的研究,指出实数k的取值范围不用证明

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若在其定义域内存在实数满足,则称函数为“局部奇函数”,若函数是定义在上的“局部奇函数”,则实数的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】恩施州某电影院共有1000个座位,票价不分等次,根据电影院的经营经验,当每张票价不超过10元时、票可全部售出;当票价高于10元时,每提高1元,将有30张票不能售出,为了获得更好的收入,需要给电影院一个合适的票价,基本条件是:①为了方便找零和算账,票价定为1元的整数倍.②影院放映一场电影的成本是4000元,票房收入必须高于成本,用x(元)表示每张票价,用y(元)表示该电影放映一场的纯收入(除去成本后的收入).

(1)求函数yfx)的解析式;

(2)票价定为多少时,电影放映一场的纯收入最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数x R , e 为自然对数的底数).

判断函数 f x 的单调性与奇偶性;

⑵是否存在实数 t 使不等式对一切的 x R 都成立若存在,求出 t 的值 不存在说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面上有一点列,对每个正整数,点位于函数的图像上,且点、点与点构成一个以为顶角顶点的等腰三角形;

1)求点的纵坐标的表达式;

2)若对每个自然数,以为边长能构成一个三角形,求的取值范围;

3)设,若取(2)中确定的范围内的最小整数,问数列的最大项的项数是多少?试说明理由;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1)求函数的解析式;

2)设,是否存在实数a,使得当时,恒有成立,若存在,求出a的取值范围;若不存在,说明理由.

查看答案和解析>>

同步练习册答案