分析 (1)求出x<0时的解析式,即可求函数f(x)在R上的解析式;
(2)根据函数f(x)在R上的解析式,写出f(x)单调区间.
解答 解:(1)设x<0,则-x>0,f(-x)=-(-x)2+2(-x)=-x2-2x.(3分)
又f(x)为奇函数,所以f(-x)=-f(x).
于是x<0时f(x)=x2+2x(5分)
所以f(x)=$\left\{\begin{array}{l}{-{x}^{2}+2x,x>0}\\{0,x=0}\\{{x}^{2}+2x,x<0}\end{array}\right.$(6分)
(2)由f(x)=$\left\{\begin{array}{l}{-{x}^{2}+2x,x>0}\\{0,x=0}\\{{x}^{2}+2x,x<0}\end{array}\right.$
可知f(x)在[-1,1]上单调递增,在(-∞,-1)、(1,+∞)上单调递减 (12分)
点评 本题考查函数的解析式,考查函数的奇偶性、单调性,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | 0 | B. | -2 | C. | 2 | D. | -3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{3}{7}$ | B. | $\frac{7}{15}$ | C. | $\frac{8}{15}$ | D. | $\frac{4}{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -7<a<24 | B. | a=7 或 a=24 | C. | a<-7或 a>24 | D. | -24<a<7 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com