精英家教网 > 高中数学 > 题目详情
设A、B、C分别是复数Z0=ai,Z1=
1
2
+bi,Z2=1+ci(其中a,b,c都是实数)对应的不共线的三点.
证明:曲线:Z=Z0cos4t+2Z1cos2tsin2t+Z2sin4t  (t∈R)与△ABC中平行于AC的中位线只有一个公共点,并求出此点.
证明:曲线方程为:z=aicos4t+(1+2bi)cos2tsin2t+(1+ci)sin4t
=(cos2tsin2t+sin4t)+i(acos4t+2bcos2tsin2t+csin4t)
所以x=cos2tsin2t+sin4t=sin2t(0≤x≤1)
y=acos4t+2bcos2tsin2t+csin4t=a(1-x)2+2b(1-x)x+cx2
即y=(a-2b+c)x2+2(b-a)x+a(0≤x≤1)①
若a-2b+c=0,则Z0、Z1、Z2三点共线,与已知矛盾,故a-2b+c≠0.
于是此曲线为对称轴与x轴垂直的抛物线.
设AB中点M:
1
4
+
1
2
(a+b)i
,BC中点N:
3
4
+
1
2
(b+c)i

与AC平行的中位线经过M(
1
4
1
2
(a+b))
及N(
3
4
1
2
(b+c))
两点,
其方程为4(a-c)x+4y-3a-2b+c=0(
1
4
≤x≤
3
4
),
令4(a-2b+c)x2+8(b-c)x+4a=4(c-a)x+3a+2b-c,
即4(a-2b+c)x2+4(2b-a-c)x+a-2b+c=0,
由a-2b+c=0,得4x2+4x+1=0,此方程在[
1
4
3
4
]
内有唯一解x=
1
2

x=
1
2
代入①得y=
1
4
(a+2b+c)

所以,所求公共点坐标为(
1
2
1
4
(a+2b+c)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设a,b,c分别是△ABC角A,B,C所对的边,sin2A+sin2B-sinAsinB=sin2C,且满足ab=4,则△ABC的面积为
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

设a、b、c分别是函数f(x)=(
1
2
)x-log2x,g(x)=2x-log
1
2
x,h(x)=(
1
2
)x-log
1
2
x
的零点,则a、b、c的大小关系为(  )
A、b<c<a
B、a<b<c
C、b<a<c
D、c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:

设A、B、C分别是复数Z0=ai,Z1=
12
+bi,Z2=1+ci(其中a,b,c都是实数)对应的不共线的三点.
证明:曲线:Z=Z0cos4t+2Z1cos2tsin2t+Z2sin4t  (t∈R)与△ABC中平行于AC的中位线只有一个公共点,并求出此点.

查看答案和解析>>

科目:高中数学 来源:2013年全国高校自主招生数学模拟试卷(六)(解析版) 题型:解答题

设A、B、C分别是复数Z=ai,Z1=+bi,Z2=1+ci(其中a,b,c都是实数)对应的不共线的三点.
证明:曲线:Z=Zcos4t+2Z1cos2tsin2t+Z2sin4t  (t∈R)与△ABC中平行于AC的中位线只有一个公共点,并求出此点.

查看答案和解析>>

同步练习册答案