精英家教网 > 高中数学 > 题目详情
12.若-1<α<3,-4<β<2,则α-|β|的取值范围是(  )
A.(1,4)B.(-5,1)C.(-1,3)D.(-5,3)

分析 根据不等式的基本性质,可依次求出|β|,-|β|,α-|β|的取值范围.

解答 解:∵-4<β<2,
∴0≤|β|<4,
∴-4<-|β|≤0,
又∵-1<α<3,
∴α-|β|∈(-5,3),
故选:D.

点评 本题考查的知识点是不等式的基本性质,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.如图,△ABC是等腰直角三角形,∠ACB=90°,AC=2a,D,E分别为AC,AB的中点,沿DE将△ADE折起,使得二面角A′-CB-A为45°.
(Ⅰ)求证:CD⊥A′E;
(Ⅱ)求平面A′CD与平面A′BE夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知f(x)=|x-2a|-alnx,f(x)有两个零点x1,x2,求证:x1•x2<8a3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.某几何体的三视图如图所示,则该几何体的体积为(  )
A.16π-$\frac{16}{3}$B.16π-$\frac{32}{3}$C.8π-$\frac{16}{3}$D.8π-$\frac{32}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若方程x2+mx+n=0(m,n∈R)的解集为{-2,-1},则m=3,n=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.关于函数f(x)=cos(2x-$\frac{π}{3}$)+sin(2x+$\frac{π}{6}$),有
①y=f(x)的最大值为$\sqrt{2}$;
②y=f(x)的最小正周期是π
③y=f(x)在区间[-$\frac{π}{12}$,$\frac{13π}{24}$]上是减函数;
④直线x=$\frac{π}{6}$是函数y=f(x)的一条对称轴方程.
其中正确命题的序号是②④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在等差数列{an}中,若a2=6,a5=12,则公差d=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知正方体ABCD-A1B1C1D1,则过点A与AB、BC、CC1所成角均相等的直线有(  )
A.1条B.2条C.4条D.无数条

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=$\left\{{\begin{array}{l}{2x-a,x≥1}\\{{e^x},x≤-1}\end{array}}$的图象上存在关于y轴的对称点,则a的取值范围是(  )
A.(-∞,$\frac{1}{e}$-1)B.(-∞,2-$\frac{1}{e}$)C.[$\frac{1}{e}$-1,+∞)D.[2-$\frac{1}{e}$,+∞)

查看答案和解析>>

同步练习册答案