精英家教网 > 高中数学 > 题目详情
长方体ABCD-A1B1C1D1中,AA1=
2
,AB=BC=2,O是底面对角线的交点.
(Ⅰ)求证:B1D1平面BC1D;
(Ⅱ)求证:A1O⊥平面BC1D;
(Ⅲ)求三棱锥A1-DBC1的体积.
(Ⅰ)证明:依题意:B1D1BD,且B1D1在平面BC1D外.(2分)
∴B1D1平面BC1D(3分)
(Ⅱ)证明:连接OC1
∵BD⊥AC,AA1⊥BD
∴BD⊥平面ACC1A1(4分)
又∵O在AC上,∴A1O在平面ACC1A1
∴A1O⊥BD(5分)
∵AB=BC=2∴AC=A1C1=2
2

OA=
2

∴Rt△AA1O中,A1O=
AA12+OA2
=2
(6分)
同理:OC1=2
∵△A1OC1中,A1O2+OC12=A1C12
∴A1O⊥OC1(7分)
∴A1O⊥平面BC1D(8分)
(Ⅲ)∵A1O⊥平面BC1D
∴所求体积V=
1
3
A1O•
1
2
•BD•OC1
(10分)
=
1
3
•2•
1
2
•2
2
•2=
4
2
3
(12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

正四面体的四个顶点都在表面积为36π的一个球面上,则这个正四面体的高等于______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,在正方体ABCD-A1B1C1D1中,E是棱DD1的中点.
(1)求直线BE和直线CD所成角的余弦值;
(2)在棱C1D1上是否存在一点F,使B1F平面A1BE?证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,空间四边形ABCD被一平面所截,截面EFGH是平行四边形.
(1)求证:CD平面EFGH;
(2)如果AB=CD=a,求证:四边形EFGH的周长为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如下的三个图中,左面的是一个长方体截去一个角所得多面体的直观图,它的主视图和左视图在右面画出(单位:cm).(1)按照给出的尺寸,求该多面体的体积;(2)在所给直观图中连结BC′,证明:BC′面EFG.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥面ABCD,AP=AB=2,BC=2
2
,E、F分别是AD、PC的中点.
(1)求证:EF面PAB;
(2)求EF与面ABCD所成角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥A-BPC中,AP⊥PC,AC⊥BC,M为AB中点,D为PB中点,且△PMB为正三角形,
(Ⅰ)求证:MD平面APC;
(Ⅱ)求证:平面ABC⊥平面APC.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,在直三棱柱ABC-A1B1C1中,AB=A1B1,AC1⊥平面A1BD,D为AC的中点.(Ⅰ)求证:B1C平面A1BD;
(Ⅱ)求证:B1C1⊥平面ABB1A1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

四棱锥P-ABCD中,平面PAD⊥平面ABCD,△PAD是正三角形,底面四边形ABCD是菱形,∠DAB=60°,E为PC中点,F是线段DE上任意一点.
(1)求证:AD⊥PB;
(2)若点M为AB的中点,N为DC的中点,求证:平面EMN平面PAD;
(3)设P,A,F三点确定的平面为a,平面a与平面DEB的交线为l,试判断直线PA与l的位置关系,并证明之.

查看答案和解析>>

同步练习册答案