精英家教网 > 高中数学 > 题目详情

【题目】假设关于某设备的使用年限(年)和所支出的年平均维修费用(万元)(即维修费用之和除以使用年限),有如下的统计资料:

使用年限

2

3

4

5

6

维修费用

2.2

3.8

5.5

6.5

7.0

(1)画出散点图;

(2)求关于的线性回归方程;

(3)估计使用年限为10年时所支出的年平均维修费用是多少?

参考公式:

【答案】(1)见解析;(2);(3)12.38.

【解析】

1)根据题中数据,可直接作出散点图;

2)根据散点图,判断两变量呈线性相关关系,由公式,结合数据求出,进而可得出回归方程;

(3)将代入(2)中方程,即可求出结果.

(1)画出散点图如图所示:

(2)从散点图可以看出,这些点大致分布在一条直线的附近,因此,两变量呈线性相关关系.

由题表数据可得

由公式可得

即回归方程是.

(3)由(2)可得,

时,

即,使用年限为10年时所支出的年平均维修费用是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若恒成立,求实数的最大值

(2)在(1)成立的条件下,正实数满足,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某工厂的一个车间抽取某种产品件,产品尺寸(单位:)落在各个小组的频数分布如下表:

数据分组

频数

(1)根据频数分布表,求该产品尺寸落在的概率;

(2)求这件产品尺寸的样本平均数;(同一组中的数据用该组区间的中点值作代表)

(3)根据频数分布对应的直方图,可以认为这种产品尺寸服从正态分布,其中近似为样本平均值近似为样本方差,经过计算得,利用该正态分布,求.

附:①若随机变量服从正态分布,则;②.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点为,点在椭圆上,且面积的最大值为,周长为6.

1)求椭圆的方程,并求椭圆的离心率;

2)已知直线与椭圆交于不同的两点,若在轴上存在点,使得中点的连线与直线垂直,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知变量之间的线性回归方程为,且变量之间的一-组相关数据如下表所示,则下列说法错误的是( )

A.可以预测,当时,B.

C.变量之间呈负相关关系D.该回归直线必过点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校数学课外兴趣小组为研究数学成绩是否与性别有关,先统计本校高三年级每个学生一学期数学成绩平均分(采用百分制),剔除平均分在分以下的学生后,共有男生名,女生名.现采用分层抽样的方法,从中抽取了名学生,按性别分为两组,并将两组学生成绩分为组,得到如下所示频数分布表.

分数段

)规定分以上为优分(含分),请你根据已知条件作出列联表.

优分

非优分

合计

男生

女生

合计

)根据你作出的列联表判断是否有以上的把握认为“数学成绩与性别有关”.

附表及公式:

,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

)当时,求的单调区间;

)若函数图象在上有两个不同的交点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知在极坐标系中,点是线段的中点,以极点为原点,极轴为轴的正半轴,并在两坐标系中取相同的长度单位,建立平面直角坐标系,曲线的参数方程是为参数).

(1)求点的直角坐标,并求曲线的普通方程;

(2)设直线过点交曲线两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数fx=2x2-5x-6有两个零点x1x2x1x2),则( .

A.B.C.D.

查看答案和解析>>

同步练习册答案