【题目】设椭圆,定义椭圆的“相关圆”的方程为,若抛物线的焦点与椭圆的一个焦点重合,且椭圆短轴的一个端点和其两个焦点构成直角三角形.
(1)求椭圆的方程和“相关圆”的方程;
(2)若直线与圆相切,且与椭圆交于两点,为坐标原点.
①求证:;
②求的最大值.
【答案】(1); (2)①证明见解析; ②
【解析】
(1)由抛物线焦点为及椭圆短轴的一个端点和其两个焦点构成直角三角形,即可求得,从而可得到本题答案;
(2)①分直线l的斜率存在和不存在两种情况考虑,求出的值,即可得到本题结论;②算出直线斜率不存在时的值,以及斜率存在时的最大值,通过比较大小,即可得到本题答案.
(1)易知抛物线焦点为,
又由的一个短轴端点与两焦点构成直角三角形,
可得,
椭圆的方程为,
相关圆的方程为.
(2)①(i)斜率不存在时,可得的方程为,
联立,
即或
,
;
(ii)斜率存在时,可设的方程为,,联立,
,
由圆与相切可得,
,
由(i)(ii)知,恒成立.
②斜率不存在时,由①可得,
斜率存在时,由①可得
,
令,则,
,
(当且仅当时取“”)
.
科目:高中数学 来源: 题型:
【题目】我国在贵州省平塘县境内修建的500米口径球面射电望远镜(FAST)是目前世界上最大单口径射电望远镜.使用三年来,已发现132颗优质的脉冲星候选体,其中有93颗已被确认为新发现的脉冲星,脉冲星是上世纪60年代天文学的四大发现之一,脉冲星就是正在快速自转的中子星,每一颗脉冲星每两脉冲间隔时间(脉冲星的自转周期)是-定的,最小小到0.0014秒,最长的也不过11.765735秒.某-天文研究机构观测并统计了93颗已被确认为新发现的脉冲星的自转周期,绘制了如图的频率分布直方图.
(1)在93颗新发现的脉冲星中,自转周期在2至10秒的大约有多少颗?
(2)根据频率分布直方图,求新发现脉冲星自转周期的平均值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】年初,湖北出现由新型冠状病毒引发的肺炎.为防止病毒蔓延,各级政府相继启动重大突发公共卫生事件一级响应,全国人心抗击疫情.下图表示月日至月日我国新型冠状病毒肺炎单日新增治愈和新增确诊病例数,则下列中表述错误的是( )
A.月下旬新增确诊人数呈波动下降趋势
B.随着全国医疗救治力度逐渐加大,月下旬单日治愈人数超过确诊人数
C.月日至月日新增确诊人数波动最大
D.我国新型冠状病毒肺炎累计确诊人数在月日左右达到峰值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设有编号分别为1,2,3,4,5,6,7,8的八个小球和编号为1,2,3,4,5,6,7,8的八个盒子.现将这八个小球随机放入八个盒子内,要求每个盒子内放一个球,要求编号为偶数的小球在编号为偶数的盒子内,且至少有四个小球在相同编号的盒子内,则一共有______种投放方法.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com