A. | (0,1) | B. | (0,$\frac{1}{2}$] | C. | [$\frac{1}{2}$,$\frac{2}{3}$] | D. | [$\frac{1}{2}$,1) |
分析 f(x)在(-∞,+∞)上的减函数,故一次项的系数为负,指数式的底数在(0,1)上,且当x=0时,右侧函数值的极限小于等于1,由这些关系转化出参数的不等式,解出其范围.
解答 解:由题意是f(x)在(-∞,+∞)上的减函数
∴$\left\{\begin{array}{l}{a-1<0}\\{0<a<1}\\{a+\frac{1}{2}≥1}\end{array}\right.$,解得$\frac{1}{2}$≤a<1,
故实数a的取值范围是[$\frac{1}{2}$,1)
故选:D.
点评 本题考查指数函数单调性的应用,解答本题关键是正确理解减函数,并由此得出参数所满足的不等式组,端点处函数值的比较是一个易漏点,解题时要注意转化的等价.
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{5}$ | D. | $\sqrt{13}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (2,64] | B. | [$\frac{1}{64}$,$\frac{1}{2}$] | C. | [$\frac{1}{64}$,$\frac{1}{2}$)∪(2,64] | D. | [$\frac{1}{64}$,$\frac{1}{2}$)∪{1}∪(2,64] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{16}$ | B. | -$\frac{1}{16}$ | C. | $\frac{1}{8}$ | D. | -$\frac{1}{8}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $-\frac{{\sqrt{3}}}{2}$ | B. | 0 | C. | $\frac{1}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com