精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,横、纵坐标均为整数的点叫做格点.若函数图象恰好经过k个格点,则称函数为k阶格点函数.已知函数:

y=sinx; y=cos(x); ③y=ex-1; ④yx2.

其中为一阶格点函数的序号为 (  )

A. ①② B. ②③ C. ①③ D. ②④

【答案】C

【解析】对于①,注意到y=sinx的值域是[-1,1];当sinx=0时,x=kπ(k∈Z),此时相应的整数x=0;当sinx=±1时,x=kπ+ (k∈Z),此时没有相应的整数x,因此函数y=sinx仅过唯一的整点(0,0),该函数是一阶格点函数.同理可知,对于②,函数y=cos(x+)不是一阶格点函数.对于③,令y=ex-1=k(k∈Z)得ex=k+1>0,x=ln(k+1),仅当k=0时,x=0∈Z,因此函数y=ex-1是一阶格点函数.对于④,注意到函数y=x2的图象经过多个整点,如点(0,0),(1,1),因此函数y=x2不是一阶格点函数.综上所述知选C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数在点处的切线方程为

(1)求的解析式;

(2)求的单调区间;

(3)若函数在定义域内恒有成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设正项数列的前项和,且满足.

(Ⅰ)计算的值,猜想的通项公式,并证明你的结论;

(Ⅱ)设是数列的前项和,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】上半年产品产量与单位成本资料如下

月份

产量/千件

单位成本/

1

2

73

2

3

72

3

4

71

4

3

73

5

4

69

6

5

68

且已知产量x与单位成本y具有线性相关关系.

(1)求出回归方程.

(2)指出产量每增加1 000件时单位成本平均变动多少?

(3)假定产量为6 000件时单位成本为多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为,且乙投球3次均未命中的概率为,甲投球未命中的概率恰是乙投球未命中的概率的2倍. 

(Ⅰ)求乙投球的命中率

(Ⅱ)若甲投球1次,乙投球2次,两人共命中的次数记为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】厂为了对新研发的一种产品进行合理定价将该产品按事先拟定的价格进行试销得到如下数据

单价x/

8

8.2

8.4

8.6

8.8

9

销量y/

90

84

83

80

75

68

(1)求线性回归方程=x+其中=-20 =- .

(2)预计在今后的销售中销量与单价仍然服从(1)中的关系且该产品的成本是4/为使工厂获得最大利润该产品的单价应定为多少元?(利润=销售收入-成本)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在调查运动员是否服用过兴奋剂的时候,给出两个问题作答,无关紧要的问题是:“你的身份证号码的尾数是奇数吗?”敏感的问题是:“你服用过兴奋剂吗?”然后要求被调查的运动员掷一枚硬币,如果出现正面,就回答第一个问题,否则回答第二个问题.由于回答哪一个问题只有被测试者自己知道,所以应答者一般乐意如实地回答问题.若我们把这种方法用于300个被调查的运动员,得到80的回答,则这群运动员中服用过兴奋剂的百分率大约为_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为直角梯形, ,平面平面 的中点, 是棱上的点,

(1)求证:平面平面

(2)若二面角大小为,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现从某班的一次期末考试中,随机的抽取了七位同学的数学(满分150分)、物理(满分110分)成绩如下表所示,数学、物理成绩分别用特征量表示,

特征量

1

2

3

4

5

6

7

t

101

124

119

106

122

118

115

y

74

83

87

75

85

87

83

关于t的回归方程;

(2)利用(1)中的回归方程,分析数学成绩的变化对物理成绩的影响,并估计该班某学生数学成绩130分时,他的物理成绩(精确到个位).

附:回归方程 中斜率和截距的最小二乘估计公式分别为:

查看答案和解析>>

同步练习册答案