精英家教网 > 高中数学 > 题目详情
6.在三棱锥P-ABC中,PA⊥平面ABC,PA=2$\sqrt{3}$,AC=2,AB=1,∠BAC=60°,则三棱锥P-ABC的外接球的表面积为(  )
A.13πB.14πC.15πD.16π

分析 求出BC,可得△ABC外接圆的半径,从而可求该三棱锥的外接球的半径,即可求出三棱锥P-ABC的外接球的表面积.

解答 解:∵AC=2,AB=1,∠BAC=60°,
∴由余弦定理可得BC=$\sqrt{3}$,
∴△ABC外接圆的半径为1,
设球心到平面ABC的距离为d,则由勾股定理可得R2=($\sqrt{3}$)2+12=4,
∴三棱锥P-ABC的外接球的表面积为4πR2=16π.
故选:D.

点评 本题考查三棱锥P-ABC的外接球的表面积,考查学生的计算能力,确定三棱锥P-ABC的外接球的半径是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.在Rt△ABC中,∠A=90°,点D是边BC上的动点,且|$\overrightarrow{AB}$|=3,|$\overrightarrow{AC}$|=4,$\overrightarrow{AD}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$(λ>0,μ>0),则当λμ取得最大值时,|$\overrightarrow{AD}$|的值为(  )
A.$\frac{7}{2}$B.3C.$\frac{5}{2}$D.$\frac{12}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如果-1<a<b<0,则下列不等式正确的是(  )
A.$\frac{1}{b}<\frac{1}{a}<{b^2}<{a^2}$B.$\frac{1}{b}<\frac{1}{a}<{a^2}<{b^2}$C.$\frac{1}{a}<\frac{1}{b}<{b^2}<{a^2}$D.$\frac{1}{a}<\frac{1}{b}<{a^2}<{b^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列说法错误的是(  )
A.命题“若x2-5x-6=0”则“x=2”的逆否命题是“若x≠2”则“x2-5x-6≠0”
B.若命题p:存在${x_0}∈R,x_0^2+{x_0}+1<0$,则¬p:对任意x∈R,x2+x+1≥0
C.若x,y∈R,则x=y是“$xy≥{(\frac{x+y}{2})^2}$”的充要条件
D.已知命题p和q,若“p或q”为假命题,则命题p和q中必一真一假

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.命题“?x0∈R,x02-x0+1<0”的否定是(  )
A.?x0∈R,x02-x0+1≥0B.?x0∉R,x02-x0+1≥0
C.?x∈R,x2-x+1≥0D.?x∉R,x2-x+1≥0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1、F2,若在C上存在一点P,使得|PO|=$\frac{1}{2}$|F1F2|(O为坐标原点),且直线OP的斜率为$\sqrt{3}$,则,双曲线C的离心率为$\sqrt{3}$+1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在复平面内,复数$\frac{2}{1+i}$对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在△ABC中,已知$∠B=45°,\;AC=\sqrt{2}BC$,则∠C=105°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如果a<b<0,则下列不等式成立的是(  )
A.$\frac{1}{a}<\frac{1}{b}$B.ac2<bc2C.a2<b2D.a3<b3

查看答案和解析>>

同步练习册答案