8£®ÒÑÖª»Ø¹éÖ±Ïß·½³ÌÊÇ£º$\stackrel{¡Ä}{y}$=$\stackrel{¡Ä}{b}$x+$\stackrel{¡Ä}{a}$£¬¼ÙÉèѧÉúÔÚ¸ßÖÐʱÊýѧ³É¼¨ºÍÎïÀí³É¼¨ÊÇÏßÐÔÏà¹ØµÄ£¬Èô5¸öѧÉúÔÚ¸ßÒ»ÏÂѧÆÚij´Î¿¼ÊÔÖÐÊýѧ³É¼¨x£¨×Ü·Ö150·Ö£©ºÍÎïÀí³É¼¨y£¨×Ü·Ö100·Ö£©Èç±í¸ñËùʾ£º
£¨¢ñ£©ÇóÕâ´Î¸ßÒ»Êýѧ³É¼¨ºÍÎïÀí³É¼¨¼äµÄÏßÐԻع鷽³Ì£»
£¨¢ò£©ÈôСºìÕâ´Î¿¼ÊÔµÄÎïÀí³É¼¨ÊÇ93·Ö£¬Äã¹À¼ÆËýµÄÊýѧ³É¼¨ÊǶàÉÙ·ÖÄØ£¿£¨¾«È·µ½0.1£©£®
£¨$\stackrel{¡Ä}{b}$=$\frac{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©£¨{y}_{i}-\overline{y}£©}{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$£¬$\stackrel{¡Ä}{a}$=$\overline{y}$-$\stackrel{¡Ä}{b}$$\overline{x}$£©

·ÖÎö £¨¢ñ£©ÓÉÌâÒâ¼ÆËãƽ¾ùÊý£¬Çó³ö»Ø¹éϵÊý$\stackrel{¡Ä}{b}$ºÍ$\stackrel{¡Ä}{a}$¼´¿É£»
£¨2£©°Ñy=93´úÈë»Ø¹é·½³Ì£¬Çó³ö¶ÔÓ¦xµÄÖµ¼´¿É£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâ¼ÆËã$\overline x=\frac{123+131+125+119+127}{5}=125$£¬
$\overline y=\frac{88+94+90+86+92}{5}=90$£»¡­£¨2·Ö£©
$\stackrel{¡Ä}{b}$=$\frac{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©£¨{y}_{i}-\overline{y}£©}{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©^{2}}$
=$\frac{£¨123-125£©£¨88-90£©+¡­+£¨127-125£©£¨92-90£©}{{£¨123-125£©}^{2}+¡­{+£¨127-125£©}^{2}}$
=$\frac{56}{80}$
=0.7£¬
$\stackrel{¡Ä}{a}$=$\overline{y}$-$\stackrel{¡Ä}{b}$$\overline{x}$=90-0.7¡Á125=2.5£¬¡­£¨6·Ö£©
ËùÒÔ$\stackrel{¡Ä}{y}$=0.7x+2.5£»¡­£¨8·Ö£©
£¨2£©°Ñy=93´úÈë$\stackrel{¡Ä}{y}$=0.7x+2.5ÖУ¬
¼ÆËãµÃx¡Ö129.3£¬
ËùÒÔСºìµÄÊýѧ³É¼¨Ô¼ÊÇ129.3·Ö£®¡­£¨12·Ö£©

µãÆÀ ±¾Ì⿼²éÁËÏßÐԻع鷽³ÌµÄ¼ÆËãÓëÓ¦ÓÃÎÊÌ⣬ÊÇ»ù´¡ÌâÄ¿£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®º¯Êýy=a2-x+2£¨a£¾0£¬a¡Ù1£©µÄͼÏóºã¹ýÒ»¶¨µãÊÇ£¨2£¬3£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÊýÁÐ{an}ÖÐa1=1£¬an+1=2an+2£®
£¨1£©ÇóÖ¤£ºÊýÁÐ{an+2}ÊǵȱÈÊýÁУ¬²¢Çó{an}µÄͨÏʽ£»
£¨2£©Èôbn=n£¨an+2£©£¬ÇóÊýÁÐ{bn}µÄÇ°nÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®Èô½«º¯Êýy=sin2xµÄͼÏóÏò×óƽÒƦȣ¬$¦È¡Ê£¨0£¬\frac{¦Ð}{2}£©$¸öµ¥Î»ºóËùµÃͼÏó¹ØÓÚyÖá¶Ô³Æ£¬Ôò¦È=$\frac{¦Ð}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖª¼¯ºÏA={x|a-1£¼x£¼2a+1}£¬B={x|0£¼x£¼3}£®
£¨1£©Èôa=2£¬ÇóA¡ÈB£»
£¨2£©ÈôA⊆B£¬ÇóaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªµãMÊÇÔ²£¨x+1£©2+y2=36ÉÏÈÎÒâµã£¬µãNΪ£¨1£¬0£©£¬µãEΪMNµÄÖе㣮
£¨1£©µ±µãMÔÚÔ²ÉÏÔ˶¯Ê±£¬ÇóµãEµÄ¹ì¼£C£»
£¨2£©¹ýµãF£¨-2£¬0£©µÄÖ±ÏßlÓëÇúÏßC½»ÓÚµãA£¬B£¬ÇÒ|AB|=2$\sqrt{6}$£¬ÇóÖ±ÏßlµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÉèÏòÁ¿$\vec a¡¢\vec b$ÊÇ»¥Ïà´¹Ö±µÄÁ½¸öµ¥Î»ÏòÁ¿£¬ÇÒ$|\vec a+3\vec b|=m|\vec a-\vec b|$£¬ÔòʵÊýmµÄֵΪ£¨¡¡¡¡£©
A£®$\sqrt{2}$B£®$2\sqrt{2}$C£®$\sqrt{5}$D£®$2\sqrt{5}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®½Ç¦ÁÖÕ±ßÉÏÒ»µãP£¨-8m£¬-3£©£¬cos¦Á=-$\frac{4}{5}$£¬Ôòm=$\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÏÂÁÐÍƶÏÖУ¬´íÎóµÄÊÇ£¨¡¡¡¡£©
A£®A¡Êl£¬A¡Ê¦Á£¬B¡Ê¦Á⇒l?¦Á
B£®l?¦Á£¬A¡Êl⇒A∉¦Á
C£®A¡Ê¦Á£¬A¡Ê¦Â£¬B¡Ê¦Á£¬B¡Ê¦Â⇒¦Á¡É¦Â=AB
D£®A£¬B£¬C¡Ê¦Á£¬A£¬B£¬C¡Ê¦ÂÇÒA£¬B£¬C²»¹²Ïß⇒¦Á£¬¦ÂÖغÏ

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸