精英家教网 > 高中数学 > 题目详情

【题目】函数的定义域为,函数.

1)若时,的解集为,求

2)若存在使得不等式成立,求实数的取值范围.

【答案】1;(2.

【解析】

1)求出集合AB,由交集运算的定义,可得AB

2)若存在使得不等式gx)≤﹣1成立,即存在使得不等式﹣m成立,得﹣m≥(min,解得实数m的取值范围.

1)由x2+2x80,解得:x(﹣∞,﹣4)∪(2+∞),

故则函数fx)=log3x2+2x8)的定义域A=(﹣∞,﹣4)∪(2+∞),

m=﹣4gx)=x23x4,由x23x40,解得:x[14],则B[14]

所以AB=(24]

2)存在使得不等式x2+m+1x+m≤﹣1成立,

即存在使得不等式﹣m成立,所以﹣m≥(min

因为x+111

当且仅当x+11,即x0时取得等号

所以﹣m1

解得:m≤﹣1

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列说法中正确的是( )

A. ”是“”成立的充分不必要条件

B. 命题,则

C. 为了了解800名学生对学校某项教改试验的意见,用系统抽样的方法从中抽取一个容量为40的样本,则分组的组距为40

D. 已知回归直线的斜率的估计值为1.23,样本点的中心为,则回归直线方程为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆和直线 ,椭圆的离心率,坐标原点到直线的距离为.

(Ⅰ)求椭圆的方程;

(Ⅱ)已知定点,若直线过点且与椭圆相交于两点,试判断是否存在直线,使以为直径的圆过点?若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某创业投资公司投资开发某种新能源产品,估计能获得10万元到100万元的投资收益,现准备制定一个对科研课题组的奖励方案:奖金(单位:万元)随投资收益(单位:万元)的增加而增加;奖金不超过9万元;奖金不超过投资收益的20%.

(1)若建立函数模型制定奖励方案,试用数学语言表述该公司对奖励函数模型的基本要求,并分析函数 是否符合公司要求的奖励函数模型,并说明原因;

(2)若该公司采用模型函数作为奖励函数模型,试确定最小的正整数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如右图,一个直径为1的小圆沿着直径为2的大圆内壁的逆时针方

向滚动,MN是小圆的一条固定直径的两个端点.那么,当小圆这

样滚过大圆内壁的一周,点MN在大圆内所绘出的图形大致是( )

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是某商场2018年洗衣机、电视机和电冰箱三种电器各季度销量的百分比堆积图(例如:第3季度内,洗衣机销量约占,电视机销量约占,电冰箱销量约占).根据该图,以下结论中一定正确的是( )

A. 电视机销量最大的是第4季度

B. 电冰箱销量最小的是第4季度

C. 电视机的全年销量最大

D. 电冰箱的全年销量最大

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在斜三棱柱中,,四边形是菱形,.

(1)求证:

(2)若平面平面,求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】考虑下面两个定义域为(0+∞)的函数fx)的集合:对任何不同的两个正数,都有=对任何不同的两个正数,都有

1)已知,若,且,求实数的取值范围

2)已知的部分函数值由下表给出:

比较4的大小关系

3)对于定义域为的函数,若存在常数,使得不等式对任何都成立,则称的上界,将中所有存在上界的函数组成的集合记作,判断是否存在常数,使得对任何,都有,若存在,求出的最小值,若不存在,说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为抛物线的焦点,过点的直线与抛物线相交于两点.

1)若,求此时直线的方程;

2)若与直线垂直的直线过点,且与抛物线相交于点,设线段的中点分别为,如图,求证:直线过定点;

3)设抛物线上的点在其准线上的射影分别为,若的面积是的面积的两倍,如图,求线段中点的轨迹方程.

查看答案和解析>>

同步练习册答案