精英家教网 > 高中数学 > 题目详情
设a为实数,函数f(x)=ex-2x+2a,x∈R.
(Ⅰ)求f(x)的单调区间与极值;
(Ⅱ)求证:当a>ln2-1且x>0时,ex>x2-2ax+1.
(Ⅰ)f(x)的单调递减区间是(-∞,ln2),单调递增区间是(ln2,+∞),极小值为f(ln2)=eln2-2ln2+2a=2(1-ln2+a);(Ⅱ)求证:当a>ln2-1且x>0时,ex>x2-2ax+1.

试题分析:(Ⅰ)要求函数的单调区间和极值,需要求导,f(x)求导之后的结果f ′(x)=ex-2,令f ′(x)=0,得x=ln2,列出x,f ′(x),f(x)的变化情况表,根据表格写出函数的单增区间,单减区间,以及极小值为f(ln2)=eln2-2ln2+2a=2(1-ln2+a),没有极大值;(Ⅱ)要证明不等式,最常用的方法是构造函数g(x)=ex-x2+2ax-1,求导得g′(x)=ex-2x+2a,由题意,a>ln2-1及(Ⅰ)知,则g′(x)的最小值为g′(ln2)=2(1-ln2+a)>0,因而对任意x∈R,都有g′(x)>0,所以g(x)在R内单调递增,那么当x∈(0,+∞),必有g(x)>g(0),而g(0)=0,所以ex>x2-2ax+1.
试题解析:(Ⅰ)由f(x)=ex-2x+2a,x∈R知f ′(x)=ex-2,x∈R.
令f ′(x)=0,得x=ln2.
于是当x变化时,f ′(x),f(x)的变化情况如下表:
x
(-∞,ln2)
ln2
(ln2,+∞)
f ′(x)

0

f(x)
单调递减↘
2(1-ln2+a)
单调递增↗
故f(x)的单调递减区间是(-∞,ln2),单调递增区间是(ln2,+∞),f(x)在x=ln2处取得极小值,极小值为f(ln2)=eln2-2ln2+2a=2(1-ln2+a).
(Ⅱ)设g(x)=ex-x2+2ax-1,x∈R.
于是g′(x)=ex-2x+2a,x∈R.
由(Ⅰ)知,当a>ln2-1时,g′(x)的最小值为g′(ln2)=2(1-ln2+a)>0.
于是对任意x∈R,都有g′(x)>0,
∴g(x)在R内单调递增.
于是当a>ln2-1时,对任意x∈(0,+∞),都有g(x)>g(0).
而g(0)=0,从而对任意x∈(0,+∞),g(x)>0.
即ex-x2+2ax-1>0,故ex>x2-2ax+1.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

某地区注重生态环境建设,每年用于改造生态环境总费用为亿元,其中用于风景区改造为亿元。该市决定建立生态环境改造投资方案,该方案要求同时具备下列三个条件:①每年用于风景区改造费用随每年改造生态环境总费用增加而增加;②每年改造生态环境总费用至少亿元,至多亿元;③每年用于风景区改造费用不得低于每年改造生态环境总费用的15%,但不得高于每年改造生态环境总费用的25%.
,请你分析能否采用函数模型y=作为生态环境改造投资方案.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数
(1)求证:函数上单调递增;
(2)设,若直线轴,求两点间的最短距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数。(为常数,
(Ⅰ)若是函数的一个极值点,求的值;
(Ⅱ)求证:当时,上是增函数;
(Ⅲ)若对任意的,总存在,使不等式成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数.
(1)讨论函数的单调性;
(2)若存在,使得成立,求满足上述条件的最大整数
(3)如果对任意的,都有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=xg(x)=x2-2ax+4,若任意x1∈[0,1],存在x2∈[1,2],使f(x1)≥g(x2),则实数a的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数的单调增区间是                     

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如果函数满足:对于任意的,都有恒成立,则的取值范围是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知定义在上的函数满足的导函数,且导函数的图象如右图所示.则不等式的解集是(   )
A.B.
C.D.

查看答案和解析>>

同步练习册答案