精英家教网 > 高中数学 > 题目详情
13.某地西红柿从2月1日起开始上市,通过市场调查,得到西红柿种植成本Q(单位:元/10kg)与上市时间t(单位:元)的数据如表:
时间t50110250
种植成本Q150108150
(1)根据上表数据判断,函数Q=at+b,Q=at2+bt+c,Q=a•bt,Q=a•logbt中哪一个适宜作为描述西红柿种植成本Q与上市时间t的变化关系?简要说明理由;
(2)利用你选取的函数,求西红柿种植成本最低时的上市天数及最低种植成本.

分析 (1)由提供的数据知,描述西红柿种植成本Q与上市时间t的变化关系函数不可能是单调函数,故选取二次函数Q=at2+bt+c进行描述,将表格所提供的三组数据(50,150),(110,108),(250,150)代入Q,即得函数解析式;
(2)由二次函数的图象与性质可得,函数Q在t取何值时,有最小值.

解答 解:(1)由提供的数据知,描述西红柿种植成本Q与上市时间t的变化关系函数不可能是常数函数,也不是单调函数;而函数Q=at+b,Q=a•bt,Q=a•logbt,在a≠0时,均为单调函数,这与表格提供的数据不吻合,
所以,选取二次函数Q=at2+bt+c进行描述.
将表格所提供的三组数据(50,150),(110,108),(250,150)
分别代入可得$\left\{\begin{array}{l}{2500a+50b+c=150}\\{12100a+110b+c=108}\\{62500a+250b+c=150}\end{array}\right.$,通过计算得a=$\frac{1}{200}$,b=-$\frac{3}{2}$,c=$\frac{425}{2}$
故西红柿种植成本Q与上市时间t的变化关系函数得到Q=$\frac{1}{200}$t2-$\frac{3}{2}$t+$\frac{425}{2}$;
(2)Q=$\frac{1}{200}$t2-$\frac{3}{2}$t+$\frac{425}{2}$=$\frac{1}{200}$(t-150)2+100,
∴t=150(天)时,西红柿种植成本Q最低,为100元/10kg.

点评 本题考查了二次函数模型的应用,考查利用二次函数的图象与性质求函数的最值问题,确定函数模型是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.若x,y满足$\left\{\begin{array}{l}{x+y≤4}\\{x-2y≥0}\\{x+2y≥4}\end{array}\right.$,则z=2x+y的最小值是(  )
A.$\frac{20}{3}$B.8C.$\frac{14}{3}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,在三棱锥C-DAB中,E,F分别是AC,BD的中点,若EF⊥AB,且向量$\overrightarrow{EF}$与$\overrightarrow{CD}$的夹角为30°,则棱CD与棱AB的关系是(  )
A.CD=2ABB.CD=ABC.AB=2CDD.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知命题p:点M(1,3)不在圆(x+m)2+(y-m)2=16的内部,命题q:“曲线C:$\frac{x^2}{m^2}+\frac{y^2}{2m+8}$=1表示焦点在x轴上的椭圆”.若“p且q”是真命题,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知单位向量$\overrightarrow{{e}_{1}}$与单位向量$\overrightarrow{{e}_{2}}$的夹角为$\frac{π}{3}$,$\overrightarrow{OP}$=3$\overrightarrow{{e}_{1}}$+4$\overrightarrow{{e}_{2}}$,则|$\overrightarrow{OP}$|等于(  )
A.5B.6C.$\sqrt{37}$D.$\sqrt{39}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.对于平面内两条不重合的直线,记原命题为“若两条直线平行,则这两条直线的倾斜角相等”,则该命题及其逆命题、否命题、逆否命题这四个命题中,真命题的个数是4个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列对古典概型的说法中正确的是(  )
①试验中所有可能出现的基本事件只有有限个;
②每个事件出现的可能性相等;
③每个基本事件出现的可能性相等;
④基本事件总数为n,随机事件A若包含k个基本事件,则P(A)=$\frac{k}{n}$.
A.②④B.①③④C.①④D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=ax3-x2+x+2,g(x)=$\frac{elnx}{x}$,若对于?x1∈(0,1],?x2∈(0,1],都有f(x1)≥g(x2),则实数a的取值范围是[-2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,角A,B,C所对的边分别为a,b,c.已知B≠$\frac{π}{2}$,且3cosC+c•cosB=$\frac{3sinA}{sinB}$
(1)求b的值;
(2)若B=$\frac{π}{3}$,求△ABC周长的范围.

查看答案和解析>>

同步练习册答案