精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,曲线的参数方程为为参数),以原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)写出曲线的普通方程和曲线的直角坐标方程;

(2)已知点是曲线上的动点,求点到曲线的最小距离.

【答案】(1)的普通方程为的普通方程为;(2).

【解析】

1)消去曲线参数方程的参数,得到的普通方程,根据极坐标和直角坐标相互转化的公式,求得的直角坐标方程.2)设出曲线的参数方程,利用点到直线距离公式求得点到曲线的距离的表达式,再根据三角函数最值求得到曲线的最小距离.

解:(1)消去参数得到

故曲线的普通方程为

,由

得到

,故曲线的普通方程为

(2)设点的坐标为

到曲线的距离

所以,当时,的值最小,

所以点到曲线的最小距离为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,过点的椭圆的两条切线相互垂直.

(Ⅰ)求椭圆的方程;

(Ⅱ)在椭圆上是否存在这样的点,过点引抛物线的两条切线,切点分别为,且直线过点?若存在,指出这样的点有几个(不必求出点的坐标);若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r米,高为h米,体积为V立方米.假设建造成本仅与表面积有关,侧面积的建造成本为100/平方米,底面的建造成本为160/平方米,该蓄水池的总建造成本为12000π元(π为圆周率).

1)将V表示成r的函数Vr),并求该函数的定义域;

2)讨论函数Vr)的单调性,并确定rh为何值时该蓄水池的体积最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线y=2x-2与抛物线x2=2py(p>0)交于M1,M2两点,且|M1M2|=8.

1)求p的值;

2)设A是直线y=上一点,直线AM2交抛物线于另一点M3,直线M1M3交直线y=于点B,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题:关于的不等式无解;命题:指数函数上的增函数.

(1)若命题为真命题,求实数的取值范围;

(2)若满足为假命题且为真命题的实数取值范围是集合,集合,且,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(I)当a=2时,求曲线在点处的切线方程;

(II)设函数,z.x.x.k讨论的单调性并判断有无极值,有极值时求出极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】影响消费水平的原因很多,其中重要的一项是工资收入.研究这两个变量的关系的一个方法是通过随机抽样的方法,在一定范围内收集被调查者的工资收入和他们的消费状况.下面的数据是某机构收集的某一年内上海、江苏、浙江、安徽、福建五个地区的职工平均工资与城镇居民消费水平(单位:万元).

地区

上海

江苏

浙江

安徽

福建

职工平均工资

9.8

6.9

6.4

6.2

5.6

城镇居民消费水平

6.6

4.6

4.4

3.9

3.8

(1)利用江苏、浙江、安徽三个地区的职工平均工资和他们的消费水平,求出线性回归方程,其中

(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过1万,则认为得到的线性回归方程是可靠的,试问所得的线性回归方程是否可靠?(的结果保留两位小数)

(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{}的前n项和为Sn,,且对任意的n∈N*,n≥2都有

(1)若0,,求r的值;

(2)数列{}能否是等比数列?说明理由;

(3)当r=1时,求证:数列{}是等差数列。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】.

(Ⅰ)当时,求曲线在点处的切线方程;

(Ⅱ)当时,在内是否存在一实数,使成立?请说明理由.

查看答案和解析>>

同步练习册答案