精英家教网 > 高中数学 > 题目详情

【题目】已知函数图像过点,在处的切线方程是

1)求的解析式;

2)求函数的图像过点的切线方程.

【答案】1;(2.

【解析】

1)把点的坐标,代入函数解析式中,得到一个方程,对函数求导,根据处的切线方程是,可以求出切点坐标和切线的斜率,这样组成方程组,解方程组即可;

2)根据该是不是切点进行分类讨论求解即可.

1)因为函数图像过点,所以.

,在处的切线方程是,因此切点的坐标为,切线的斜率为4,因此有:,三个方程联立得:

所以函数的解析式为:

2)当点是切点时,由已知可知,过该点的切线方程为

当点不是切点时,设的切点为,所以.

因为,所以,因此过该切点的切线方程为:

,点代入该切线方程中得:

,解得,或(舍去),所以此时切线方程为:.

综上所述:函数的图像过点的切线方程为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系,曲线的参数方程为(其中为参数)曲线的普通方程为,以坐标原点为极点,以轴正半轴为极轴建立极坐标系.

1)求曲线和曲线的极坐标方程;

2)射线:依次与曲线和曲线交于两点,射线:依次与曲线和曲线交于两点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为实数.

1)当时,求函数上的最大值和最小值;

2)求函数的单调区间;

3)若函数的导函数上有零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)是定义在R 且周期为1的函数,在区间上, 其中集合D=,则方程f(x)-lgx=0的解的个数是____________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某快递公司在某市的货物转运中心,拟引进智能机器人分拣系统,以提高分拣效率和降低物流成本,已知购买x台机器人的总成本p(x)万元.

(1)若使每台机器人的平均成本最低,问应买多少台?

(2)现按(1)中的数量购买机器人,需要安排m人将邮件放在机器人上,机器人将邮件送达指定落袋格口完成分拣,经实验知,每台机器人的日平均分拣量q(m) (单位:件),已知传统人工分拣每人每日的平均分拣量为1200件,问引进机器人后,日平均分拣量达最大值时,用人数量比引进机器人前的用人数量最多可减少百分之几?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AB是半径为2的圆周上的定点,P为圆周上的动点,是锐角,大小为β.图中阴影区域的面积的最大值为

A. 4β+4cosβB. 4β+4sinβC. 2β+2cosβD. 2β+2sinβ

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在原点,焦点在轴上,离心率为,且过点P

(1)求椭圆的标准方程;

(2)已知斜率为1的直线l过椭圆的右焦点F交椭圆于A.B两点,求弦AB的长。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知直线与抛物线相交于两点,为坐标原点,直线轴相交于点,且.

1)求证:

2)求点的横坐标;

3)过点分别作抛物线的切线,两条切线交于点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某养殖场需要通过某装置对养殖车间进行恒温控制,为了解日用电量与日平均气温(℃)之间的关系,随机统计了某5天的用电量与当天平均气温,并制作了对照表:

日平均气温(℃)

3

4

5

6

7

日用电量(

2.5

3

4

4.5

6

(Ⅰ)求关于的线性回归方程;

(Ⅱ)请利用(Ⅰ)中的线性回归方程预测日平均气温为12℃时的日用电量.

附:回归直线的斜率和截距的最小二乘法估计公式分别为.

查看答案和解析>>

同步练习册答案