精英家教网 > 高中数学 > 题目详情

【题目】30瓶饮料中,有3瓶已过了保质期.从这30瓶饮料中任取2瓶,则至少取到一瓶已过保质期的概率为 _________ .(结果用最简分数表示)

【答案】

【解析】

试题本题是一个古典概型,试验发生所包含的事件是从30个饮料中取2瓶,共有C302种结果,满足条件的事件是至少取到一瓶已过保质期的,它的对立事件是没有过期的,共有C272种结果,计算可得其概率;根据对立事件的概率得到结果.

解:由题意知本题是一个古典概型,

试验发生所包含的事件是从30个饮料中取2瓶,共有C302=435种结果,

满足条件的事件是至少取到一瓶已过保质期的,

它的对立事件是没有过期的,共有C272=351种结果,

根据对立事件和古典概型的概率公式得到P=1﹣==

故答案为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】袋子AB中装有若干个均匀的红球和白球,从A中摸出一个红球的概率是,从B中摸出一个红球的概率为p

1)从A中有放回地摸球,每次摸出一个,有3次摸到红球即停止.求恰好摸5次停止的概率;

2)若AB两个袋子中的球数之比为,将AB中的球装在一起后,从中摸出一个红球的概率是,求p的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据下列关系式,算出数列的前4项,然后猜想它的通项,并用数学归纳法证明你的猜想.

1

2

3.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一排个空位,四人就坐其中的个位子.

1)若每人左、右两边都有空位,有几种坐法?

2)若个空位中,个相连,另个也相连,但个不连在一起,有几种坐法?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知平面平面.求:

1所成角;

2与平面所成角;

3)二面角大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列中,,若为常数),则称等差比数列”.下列是对等差比数列的判断:

不可能为;②等差数列一定是等差比数列;

③等比数列一定是等差比数列;④等差比数列中可以有无数项为.

其中正确的判断是( .

A.①②B.②③C.③④D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:如果数列的任意连续三项均能构成一个三角形的三边长,则称三角形数列,对于三角形数列,如果函数使得仍为一个三角形数列,则称是数列保三角形函数.

1)已知是首项为2,公差为1的等差数列,若是数列保三角形函数,求的取值范围;

2)已知数列的首项为2010是数列的前项和,且满足,证明三角形数列;

3)根据保三角形函数的定义,对函数,和数列1提出一个正确的命题,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标平面上的一列点,简记为.若由构成的数列满足,其中为方向与轴正方向相同的单位向量,则称点列.

1)判断,是否为点列,并说明理由;

2)若点列,且点在点的右上方.任取其中连续三点,判断的形状(锐角三角形、直角三角形、钝角三角形),并予以证明;

3)若点列,正整数,满足,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】今年2月份,我国武汉地区爆发了新冠肺炎疫情,为了预防疫情蔓延,全国各大医药厂商纷纷加紧生产口罩,某医疗器械生产工厂为了解目前的生产力,统计了每个工人每小时生产的口罩数量(单位:箱),得到如图所示的频率分布直方图,其中每个工人每小时的产量均落在[1070]内,数据分组为[1020)、[2030)、[3040)、[4050)、[5060)、,已知前三组的频率成等差数列,第三组、第四组、第五组的频率成等比数列,最后一组的频率为

1)求实数a的值;

2)在最后三组中采用分层抽样的方法随机抽取了6人,现从这6人中随机抽出两人对其它小组的工人进行生产指导,求这两人来自同一小组的概率.

查看答案和解析>>

同步练习册答案