【题目】在30瓶饮料中,有3瓶已过了保质期.从这30瓶饮料中任取2瓶,则至少取到一瓶已过保质期的概率为 _________ .(结果用最简分数表示)
科目:高中数学 来源: 题型:
【题目】袋子A和B中装有若干个均匀的红球和白球,从A中摸出一个红球的概率是,从B中摸出一个红球的概率为p.
(1)从A中有放回地摸球,每次摸出一个,有3次摸到红球即停止.求恰好摸5次停止的概率;
(2)若A,B两个袋子中的球数之比为,将A,B中的球装在一起后,从中摸出一个红球的概率是,求p的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一排个空位,四人就坐其中的个位子.
(1)若每人左、右两边都有空位,有几种坐法?
(2)若个空位中,个相连,另个也相连,但个不连在一起,有几种坐法?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在数列中,,若(为常数),则称为“等差比数列”.下列是对“等差比数列”的判断:
①不可能为;②等差数列一定是等差比数列;
③等比数列一定是等差比数列;④等差比数列中可以有无数项为.
其中正确的判断是( ).
A.①②B.②③C.③④D.①④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义:如果数列的任意连续三项均能构成一个三角形的三边长,则称为“三角形”数列,对于“三角形”数列,如果函数使得仍为一个“三角形”数列,则称是数列的“保三角形函数”,.
(1)已知是首项为2,公差为1的等差数列,若是数列的“保三角形函数”,求的取值范围;
(2)已知数列的首项为2010,是数列的前项和,且满足,证明是“三角形”数列;
(3)根据“保三角形函数的定义,对函数,和数列1,提出一个正确的命题,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标平面上的一列点,简记为.若由构成的数列满足,其中为方向与轴正方向相同的单位向量,则称为点列.
(1)判断,是否为点列,并说明理由;
(2)若为点列,且点在点的右上方.任取其中连续三点,判断的形状(锐角三角形、直角三角形、钝角三角形),并予以证明;
(3)若为点列,正整数,满足,求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】今年2月份,我国武汉地区爆发了新冠肺炎疫情,为了预防疫情蔓延,全国各大医药厂商纷纷加紧生产口罩,某医疗器械生产工厂为了解目前的生产力,统计了每个工人每小时生产的口罩数量(单位:箱),得到如图所示的频率分布直方图,其中每个工人每小时的产量均落在[10,70]内,数据分组为[10,20)、[20,30)、[30,40)、[40,50)、[50,60)、,已知前三组的频率成等差数列,第三组、第四组、第五组的频率成等比数列,最后一组的频率为.
(1)求实数a的值;
(2)在最后三组中采用分层抽样的方法随机抽取了6人,现从这6人中随机抽出两人对其它小组的工人进行生产指导,求这两人来自同一小组的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com