【题目】已知时,函数有极值
(1)求实数的值;
(2)若方程有3个实数根,求实数的取值范围。
【答案】(1);(2)
【解析】
(1)先求导数,根据f(1)=-2,f′(1)=0列出方程求出a,b;
(2)由(1)所求解析式可得f′(x),利用导数可得f(x)的单调区间及极值,根据f(x)的图象的大致形状即可求得k的范围;
(1)因为,所以f′(x)=3ax2+b.
又因为当x=1时,f(x)的极值为-2,所以,
解得a=1,b=-3.
(2)由(1)可得,f′(x)=3x2-3=3(x+1)(x﹣1),
令f′(x)=0,得x=±1,
当x<﹣1或x>1时f′(x)>0,f(x)单调递增,当﹣1<x<1时,f′(x)<0,f(x)单调递减;
所以当x=﹣1时f(x)取得极大值,f(﹣1),当x=1时f(x)取得极小值,f(1),大致图像如图:
要使方程f(x)=k有3个解,只需k.
故实数k的取值范围为(-2,2).
科目:高中数学 来源: 题型:
【题目】已知函数(>0)的部分图象如图所示,A,B分别是这部分图象上的最高点、最低点,为坐标原点,若·=0,则下列结论:①函数是周期为4的奇函数;②函数是周期为4的偶函数;③函数的最大值是;④函数向左平移个单位后得到的函数图象关于原点对称;其中错误命题的个数是( )
A.3B.2C.1D.0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业有甲、乙两套设备生产同一种产品,为了检测两套设备的生产质量情况,随机从两套设备生产的大量产品中各抽取了50件产品作为样本,检测一项质量指标值,若该项质量指标值落在内,则为合格品,否则为不合格品. 表1是甲套设备的样本的频数分布表,图1是乙套设备的样本的频率分布直方图.
表1:甲套设备的样本的频数分布表
质量指标值 | [95,100) | [100,105) | [105,110) | [110,115) | [115,120) | [120,125] |
频数 | 1 | 4 | 19 | 20 | 5 | 1 |
图1:乙套设备的样本的频率分布直方图
(1)填写下面列联表,并根据列联表判断是否有90%的把握认为该企业生产的这种产品的质量指标值与甲、乙两套设备的选择有关;
甲套设备 | 乙套设备 | 合计 | |||||||||||||
合格品 | |||||||||||||||
不合格品 | |||||||||||||||
合计 | ,求的期望. |
P(K2≥k0) | 0.15 | 0.10 | 0.050 | 0.025 | 0.010 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的两个焦点分别为,离心率为,过的直线与椭圆交于两点,且的周长为8.
(1)求椭圆的方程;
(2)直线过点,且与椭圆交于两点,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2021年我省将实施新高考,新高考“依据统一高考成绩、高中学业水平考试成绩,参考高中学生综合素质评价信息”进行人才选拔。我校2018级高一年级一个学习兴趣小组进行社会实践活动,决定对某商场销售的商品A进行市场销售量调研,通过对该商品一个阶段的调研得知,发现该商品每日的销售量(单位:百件)与销售价格(元/件)近似满足关系式,其中为常数已知销售价格为3元/件时,每日可售出该商品10百件。
(1)求函数的解析式;
(2)若该商品A的成本为2元/件,根据调研结果请你试确定该商品销售价格的值,使该商场每日销售该商品所获得的利润(单位:百元)最大。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某快递公司收取快递费用的标准是:重量不超过的包裹收费10元;重量超过的包裹,除收费10元之外,超过的部分,每超出(不足,按计算)需再收5元.该公司将最近承揽的100件包裹的重量统计如下:
公司对近60天,每天揽件数量统计如下表:
以上数据已做近似处理,并将频率视为概率.
(1)计算该公司未来3天内恰有2天揽件数在之间的概率;
(2)①估计该公司对每件包裹收取的快递费的平均值;
②公司将快递费的三分之一作为前台工作人员的工资和公司利润,剩余的用作其他费用.目前前台有工作人员3人,每人每天揽件不超过150件,工资100元.公司正在考虑是否将前台工作人员裁减1人,试计算裁员前后公司每日利润的数学期望,并判断裁员是否对提高公司利润更有利?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的两条相邻对称轴之间的距离为.
(1)求的值;
(2)将函数的图象向左平移个单位,再将所得函数的图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,得到函数的图象,若函数在区间上存在零点,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com