【题目】如图1,在等腰梯形中,两腰,底边是的三等分点,是的中点.分别沿将四边形和折起,使重合于点,得到如图2所示的几何体.在图2中,分别为的中点.
(1)证明:平面
(2)求几何体的体积.
科目:高中数学 来源: 题型:
【题目】已知直线、与平面、满足,,,则下列命题中正确的是( )
A.是的充分不必要条件
B.是的充要条件
C.设,则是的必要不充分条件
D.设,则是的既不充分也不必要条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.
(Ⅰ)求椭圆方程;
(Ⅱ)设为椭圆右顶点,过椭圆的右焦点的直线与椭圆交于,两点(异于),直线,分别交直线于,两点. 求证:,两点的纵坐标之积为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设,,记.
(1)若,,当时,求的最大值;
(2)若,,且方程有两个不相等的实根、,求的取值范围;
(3)若,,,且a、b、c是三角形的三边长,试求满足等式:有解的最大的x的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,是某海湾旅游区的一角,其中,为了营造更加优美的旅游环境,旅游区管委会决定在直线海岸和上分别修建观光长廊和AC,其中是宽长廊,造价是元/米,是窄长廊,造价是元/米,两段长廊的总造价为120万元,同时在线段上靠近点的三等分点处建一个观光平台,并建水上直线通道(平台大小忽略不计),水上通道的造价是元/米.
(1) 若规划在三角形区域内开发水上游乐项目,要求的面积最大,那么和的长度分别为多少米?
(2) 在(1)的条件下,建直线通道还需要多少钱?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,点,是曲线上的任意一点,动点满足
(1)求点的轨迹方程;
(2)经过点的动直线与点的轨迹方程交于两点,在轴上是否存在定点(异于点),使得?若存在,求出的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知正方体的棱长为2,E、F、G分别为的中点,给出下列命题:
①异面直线EF与AG所成的角的余弦值为;
②过点E、F、G作正方体的截面,所得的截面的面积是;
③平面
④三棱锥的体积为1
其中正确的命题是_____________(填写所有正确的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆,圆,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.
(1)求曲线C的方程;
(2)设不经过点的直线l与曲线C相交于A,B两点,直线QA与直线QB的斜率均存在且斜率之和为-2,证明:直线l过定点.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com