精英家教网 > 高中数学 > 题目详情

【题目】(本小题满分10分) 选修4-4:极坐标系与参数方程

在极坐标系中曲线的极坐标方程为,点.以极点为原点,以极轴为轴正半轴建立直角坐标系.斜率为的直线过点,且与曲线交于两点.

)求出曲线的直角坐标方程和直线的参数方程;

)求点到两点的距离之积.

【答案】1;(22

【解析】试题分析:(1)对两边乘以,可得曲线的直角坐标方程为,按照直线参数方程的概念,有直线的参数方程为;(2)联立直线的方程和抛物线的方程,得,根据根与系数关系,有.

试题解析:

1,由

所以,即为曲线C的直角坐标方程;点M的直角坐标为

直线l的倾斜角为故直线l的参数方程为

t为参数)即t为参数)

2)把直线l的参数方程t为参数)代入曲线C的方程得

,即

AB对应的参数分别为,则

又直线l经过点M,故由t的几何意义得

MAB两点的距离之积

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在R上定义运算:xy=x(1﹣y),若不等式(x﹣a)(x﹣b)>0的解集是(2,3),则a+b的值为(
A.1
B.2
C.4
D.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 (x∈R),其中t∈R,将f(x)的最小值记为g(t).
(1)求g(t)的表达式;
(2)当﹣1≤t≤1时,要使关于t的方程g(t)=kt有且仅有一个实根,求实数k的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某货轮匀速行驶在相距300海里的甲、乙两地间运输货物,运输成本由燃料费用和其它费用组成,已知该货轮每小时的燃料费用与其航行速度的平方成正比(比例系数为0.5),其它费用为每小时800元,且该货轮的最大航行速度为50海里/小时.
(1)请将从甲地到乙地的运输成本y(元)表示为航行速度x(海里/小时)的函数;
(2)要使从甲地到乙地的运输成本最少,该货轮应以多大的航行速度行驶?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题是真命题的为(
A.若x2=1,则x=1
B.若x=y,则
C.若x<y,则x2<y2
D.若 ,则x=y

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= x3 (m+3)x2+(m+6)x,x∈R.(其中m为常数)
(1)当m=4时,求函数的极值点和极值;
(2)若函数y=f(x)在区间(0,+∞)上有两个极值点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cos(2x+ )+1,△ABC中,角A、B、C的对边分别是a、b、c.
(1)若角A、B、C成等差数列,求f(B)的值;
(2)若f( )= ,边a、b、c成等比数列,△ABC的面积S= ,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点P(0,﹣1)是椭圆C1 =1(a>b>0)的一个顶点,C1的长轴是圆C2:x2+y2=4的直径,l1 , l2是过点P且互相垂直的两条直线,其中l1交圆C2于A,B两点,l2交椭圆C1于另一点D.

(1)求椭圆C1的方程;
(2)求△ABD面积的最大值时直线l1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列{an}满足2a1+a3=3a2 , 且a3+2是a2 , a4的等差中项.
(1)求数列{an}的通项公式;
(2)若bn=an+log2 ,Sn=b1+b2+…bn , 求使 Sn﹣2n+1+47<0 成立的正整数n的最小值.

查看答案和解析>>

同步练习册答案