精英家教网 > 高中数学 > 题目详情

已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且x∈[0,2]时,f(x)=log2(x+1),甲、乙、丙、丁四位同学有下列结论:甲:f(3)=1;乙:函数f(x)在[-6,-2]上是减函数;丙:函数f(x)关于直线x=4对称;丁:若m∈(0,1),则关于x的方程f(x)-m=0在[0,6]上所有根之和为4.其中正确的是


  1. A.
    甲、乙、丁
  2. B.
    乙、丙
  3. C.
    甲、乙、丙
  4. D.
    甲、丙
A
分析:对于甲:取x=1,得f(3)=-f(1)=1;
乙:由f(x-4)=f(-x)得f(x-2)=f(-x-2),即f(x)关于直线x=-2对称,结合奇函数在对称区间上单调性相同,可得f(x)在[-2,2]上为增函数,利用函数f(x)关于直线x=-2对称,可得函数f(x)在[-6,-2]上是减函数;
丙:根据已知可得(4,0)点是函数图象的一个对称中心;
丁:若m∈(0,1),则关于x的方程f(x)-m=0在[0,6]上有2个根,利用对称性得两根的和为2×2=4,故可得结论.
解答:取x=1,得f(1-4)=-f(1)=-log2(1+1)=-1,所以f(3)=-f(1)=1,故甲的结论正确;
定义在R上的奇函数f(x)满足f(x-4)=-f(x),则f(x-4)=f(-x),
∴f(x-2)=f(-x-2),
∴函数f(x)关于直线x=-2对称,
又∵奇函数f(x),x∈[0,2]时,f(x)=log2(x+1)为增函数,
∴x∈[-2,2]时,函数为单调增函数,
∵函数f(x)关于直线x=-2对称,
∴函数f(x)在[-6,-2]上是减函数,故乙正确;
∵f(x-4)=-f(x),则f(x+4)=-f(x),即f(x-4)=f(x+4)
又由f(x)为奇函数f(x-4)=-f(4-x),即f(x+4)=-f(4-x),即函数的图象关于(4,0)点对称,
故丙的结论错误;
若m∈(0,1),则关于x的方程f(x)-m=0在[0,6]上有2个根,两根的和为:2×2=4,
所以所有根之和为4.故丁正确.
其中正确的是:甲,乙,丁.
故选A.
点评:本题考查函数的性质,考查函数单调性的应用、函数奇偶性的应用、对称性等基础知识,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在R上的单调递增奇函数以f(x),若当0≤θ≤
π2
时,f(cosθ+msinθ)+f(-2m-2)<0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的奇函数f(x).当x<0时,f(x)=x2+2x.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)问:是否存在实数a,b(a≠b),使f(x)在x∈[a,b]时,函数值的集合为[
1
b
1
a
]
?若存在,求出a,b;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:大连二十三中学2011学年度高二年级期末测试试卷数学(理) 题型:选择题

已知定义在R上的奇函数,满足,且在区间[0,2]上是增函

数,则(     ).     

A.            B.

C.            D.

 

查看答案和解析>>

科目:高中数学 来源:2012届浙江省高二下学期期末考试理科数学试卷 题型:选择题

已知定义在R上的奇函数,满足,且在区间[0,1]上是增函

数,若方程在区间上有四个不同的根,则

(     )

(A)     (B)      (C)      (D)

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义在R上的单调递增奇函数以f(x),若当0≤θ≤数学公式时,f(cosθ+msinθ)+f(-2m-2)<0恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案