精英家教网 > 高中数学 > 题目详情
1.若m,n为两个正实数,且2m+8n-mn=0,则m+n的最小值为18.

分析 利用“乘1法”与基本不等式的性质即可得出.

解答 解:∵m,n>0,且2m+8n-mn=0,
∴$\frac{2}{n}+\frac{8}{m}=1$,
∴m+n=(m+n)$(\frac{2}{n}+\frac{8}{m})$=10+$\frac{2m}{n}+\frac{8n}{m}$≥$10+2\sqrt{\frac{2m}{n}•\frac{8n}{m}}$=18,
当且仅当$\frac{2m}{n}=\frac{8n}{m}$并且2m+8n-mn=0,即m=2n=12,时取等号.
∴m+n的最小值为:18.
故答案为:18.

点评 本题考查了“乘1法”与基本不等式的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.定义:[x]表示不超过x的最大整数,已知定义在R上的函数f(x)满足f(x+1)=-f(x).当x∈[0,2]时,f(x)=$\left\{\begin{array}{l}{x-[lo{g}_{2}(x+1)],x∈[0,1)}\\{2-ax,x∈[1,2]}\end{array}\right.$.则函数g(x)=f(x)-|log5x|共有零点5个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=lgx(x∈R+),若x1,x2∈R+,判断$\frac{1}{2}$[f(x1)+f(x2)]与f($\frac{{x}_{1}+{x}_{2}}{2}$)的大小并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数y=x+$\frac{4}{x}$在[2,4]上的最小值是4,最大值是5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.等差数列{an}的前n项和为Sn,且S6=-5,S10=15,数列{$\frac{{S}_{n}}{n}$}的前n项和为 Sn=$\frac{7}{24}{n}^{2}$-$\frac{97}{24}n$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设函数f(x)=$\left\{\begin{array}{l}{-x\\;x≤0}\\{{x}^{2}\\;x>0}\end{array}\right.$,若f(a)≥1,则a的取值范围是(-∞,-1]∪[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知在等腰直角三角形ABC中,∠ABC=90°,AB=4,等腰直角三角形PQR的三个顶点P、R、Q分别在AB、BC、AC三条边上运动,且∠PRQ=90°,则S△PQR的最小值为(  )
A.1B.$\frac{5}{4}$C.$\frac{8}{5}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.数列{an}是1,(1+$\frac{1}{2}$),(1+$\frac{1}{2}$+$\frac{1}{4}$)…(1+$\frac{1}{2}$+$\frac{1}{4}$+…+$\frac{1}{{2}^{n-1}}$),其前n项和Sn=2n-2+$\frac{1}{{2}^{n-1}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数y=1og3(x2-4x+3)的单调区间为增区间为(3,+∞),减区间为(-∞,1).

查看答案和解析>>

同步练习册答案