精英家教网 > 高中数学 > 题目详情
(6)函数y=(x<0)的反函数是

(A)y=(x<0)     (B)y=-(x<0)

(C)y=(x>2)     (D)y=-(x>2)

D

解析:由y=知y>2,且x=-

∴反函数为y=-


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列命题:
(1)存在实数α,使sinαcosα=1;
(2)存在实数α,使sinα+cosα=
3
2

(3)函数y=sin(
2
-2x)
是偶函数;
(4)方程x=
π
6
是函数y=cos(x-
π
6
)
图象的一条对称轴方程;
(5)若α,β是第一象限角,且α>β,则tanα>tanβ.
(6)把函数y=cos(2x+
π
12
)
的图象向右平移
π
12
个单位,所得的函数解析式为y=cos(2x-
π
12
)

其中正确命题的序号是
 
.(注:把你认为正确的命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=Asin(ωx+?)(A>0,ω>0,|?|<
π
2
)
的一段图象如图所示.
(1)求函数y=f(x)的解析式;
(2)将函数y=f(x)的图象向右平移
π
8
个单位,得到y=g(x)的图象,求直线y=
6
与函数y=
2
g(x)
的图象在(0,π)内所有交点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出如下命题:
①直线x=
π
6
是函数y=sin(x+
π
3
)
的一条对称轴;
②函数f(x)关于点(3,0)对称,满足f(6+x)=f(6-x),且当x∈[0,3]时,函数为增函数,则f(x)在[6,9]上为减函数;
③命题“对任意a∈R,方程x2+ax-1=0有实数解”的否定形式为“存在a∈R,方程x2+ax-1=0无实数解”;
④lg25+lg2•lg50=1.
以上命题中正确的是
①②③④
①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

下面有五个命题:
①终边在y轴上的角的集合是{β|β=2kπ+
π
2
,k∈Z
}.
②设一扇形的弧长为4cm,面积为4cm2,则这个扇形的圆心角的弧度数是2.
③函数y=sin4x-cos4x的最小正周期是2π.
④为了得到y=3sin2x的图象,只需把函数y=3sin(2x+
π
3
)的图象向右平移
π
6

⑤函数y=tan(-x-π)在[-π,-
π
2
)上
是增函数.
所有正确命题的序号是
 
.(把你认为正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

给出下列命题:
(1)存在实数α,使sinαcosα=1;
(2)存在实数α,使sinα+cosα=
3
2

(3)函数y=sin(
2
-2x)
是偶函数;
(4)方程x=
π
6
是函数y=cos(x-
π
6
)
图象的一条对称轴方程;
(5)若α,β是第一象限角,且α>β,则tanα>tanβ.
(6)把函数y=cos(2x+
π
12
)
的图象向右平移
π
12
个单位,所得的函数解析式为y=cos(2x-
π
12
)

其中正确命题的序号是 ______.(注:把你认为正确的命题的序号都填上)

查看答案和解析>>

同步练习册答案