精英家教网 > 高中数学 > 题目详情

【题目】若a,b 是函数 的两个不同的零点,且a,b,-2 这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q 的值等于( )
A.6
B.7
C.8
D.9

【答案】D
【解析】由韦达定理得a+b=p,a·b=q,则a>0,b>0,当a,b,-2适当排序后成等比数列时,-2必为等比数列,故a·b=q=4,b=,当适当排序后成等差数列时,-2必不是等差中项,当a是等差中时,2a=-2,解得a=1,b=4;当是等差中项时,=a-2,解得a=4,b=1,综上所述,a+b=p=5,所以p+q=9,故选D.
【考点精析】解答此题的关键在于理解等差数列的通项公式(及其变式)的相关知识,掌握通项公式:,以及对等比数列的通项公式(及其变式)的理解,了解通项公式:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若偶函数f(x)在(﹣∞,0]上单调递减,a=f(log23),b=f(log45),c=f(2 ),则a,b,c满足(
A.a<b<c
B.b<a<c
C.c<a<b
D.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着人们生活水平的不断提高,人们对餐饮服务行业的要求也越来越高,由于工作繁忙无法抽出时间来享受美味,这样网上外卖订餐应运而生.若某商家的一款外卖便当每月的销售量(单位:千盒)与销售价格(单位:元/盒)满足关系式其中,为常数,已知销售价格为14元/盒时,每月可售出21千盒.

(1)求的值;

(2)假设该款便当的食物材料、员工工资、外卖配送费等所有成本折合为每盒12元(只考虑销售出的便当盒数),试确定销售价格的值,使该店每月销售便当所获得的利润最大.(结果保留一位小数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的各项均为正数,a1=1,前n项和为Sn.数列{bn}为等比数列,b1=1,且b2S2=6,b2S3=8.

(1)求数列{an}与{bn}的通项公式;

(2)求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某人上午7时,乘摩托艇以匀速vkm/h(8≤v≤40)从A港出发到距100km的B港去,然后乘汽车以匀速wkm/h(30≤w≤100)自B港向距300km的C市驶去.应该在同一天下午4至9点到达C市. 设乘坐汽车、摩托艇去目的地所需要的时间分别是xh,yh.
(1)作图表示满足上述条件的x,y范围;
(2)如果已知所需的经费p=100+3(5﹣x)+2(8﹣y)(元),那么v,w分别是多少时p最小?此时需花费多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】f(x)是定义在(0,+∞)上的单调增函数,满足f(xy)=f(x)+f(y),f(3)=1,当f(x)+f(x-8)≤2时,x的取值范围是(  )

A. (8,+∞) B. (8,9] C. [8,9] D. (0,8)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(题文)已知函数f(x)=ax2bxc(a>0,bR,cR).

(1)若函数f(x)的最小值是f(-1)=0,且c=1, F(x)=F(2)+F(-2)的值;

(2)a=1,c=0,且|f(x)|≤1在区间(0,1]上恒成立,试求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}中,点(an , an+1)在直线y=x+2上,且首项a1是方程3x2﹣4x+1=0的整数解.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)数列{an}的前n项和为Sn , 等比数列{bn}中,b1=a1 , b2=a2 , 数列{bn}的前n项和为Tn , 当Tn≤Sn时,请直接写出n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数y=2cos(2x+)的图象向左平移个单位长度,得到函数y=fx)的图象.

(1)求fx)的单调递增区间;

(2)求fx)在[0,]上的值域.

查看答案和解析>>

同步练习册答案