分析 (1)通过证明AB⊥平面AB1C,来证明:AB⊥B1C;
(2)利用等体积转化求三棱锥B1-CC1A的体积.
解答 (1)证明:在△ABB1中,∵$AB_1^2=A{B^2}+BB_1^2-2AB•B{B_1}•cos∠AB{B_1}=3$
∴$A{B_1}=\sqrt{3}$.
又AB=1,BB1=2,∴由勾股定理的逆定理,得△ABB1为直角三角形.
∴B1A⊥AB.
又CA⊥AB,CA∩B1A=A,
∴AB⊥平面AB1C.
∵B1C?平面AB1C
∴AB⊥B1C
(2)解:由题意,${V_{{B_1}-C{C_1}A}}={V_{B-C{C_1}A}}={V_{{C_1}-ABC}}={V_{{B_1}-ABC}}$.
在△AB1C中,∵${B_1}C=2,A{B_1}=\sqrt{3},AC=1$,
则由勾股定理的逆定理,得△AB1C为直角三角形,∴B1A⊥AC.
又B1A⊥AB,AB∩AC=A,∴B1A⊥平面ABC.
∴B1A为三棱锥B1-ABC的高.
∴${V_{{B_1}-C{C_1}A}}={V_{{B_1}-ABC}}=\frac{1}{3}•{S_{△ABC}}•{B_1}A=\frac{1}{3}×\frac{1}{2}×\sqrt{3}=\frac{{\sqrt{3}}}{6}$
点评 本题考查了线面垂直的性质与判定,棱锥的体积计算,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | 1.2 | B. | 1.6 | C. | 1.8 | D. | 2.4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{2}{a^3}$ | B. | $\frac{1}{4}{a^3}$ | C. | $\frac{{\sqrt{2}}}{4}{a^3}$ | D. | $\frac{1}{12}{a^3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com