精英家教网 > 高中数学 > 题目详情
已知圆x2+y2=8,定点P(4,0),问过点P的直线的倾斜角在什么范围内取值时,该直线与已知圆无公共点.
分析:通过直线的斜率存在与不存在两种情况,分别解答,利用直线与已知圆无公共点,就是圆心到直线的距离大于半径,求出斜率的范围.
解答:解:①当直线的斜率不存在时,即直线的倾斜角为90°,
因为圆x2+y2=8的圆心(0,0),半径是2
2

所以直线方程是x=4与圆x2+y2=8无公共点.
②当直线的斜率存在时,设直线的斜率为k,则直线方程为:y=k(x-4),即kx-y-4k=0.
由直线与圆无公共点,
所以圆心到直线的距离公式得:
|4k|
k2+1
>2
2

求得k>1或k<-1
所以,倾斜角为(45°,90°)∪(90°,135°)
综上,倾斜角的范围为(45°,135°).
点评:本题是中档题,考查直线与圆的位置关系,考查分类讨论思想,转化思想与计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆x2+y2=8内一点P0(-1,2),AB为过点P0且倾斜角为α的弦.
(1)当α=135°时,求AB的长.
(2)当 弦AB最长时,求出直线AB的方程.
(3)当弦AB被点P0平分时,求出直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆x2+y2=8,定点P(4,0),问过P点的直线的斜率在什么范围内取值时,这条直线与已知圆:(1)相切,(2)相交,(3)相离,并写出过P点的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆x2+y2=8,定点P(4,0),问过P点的直线的斜率在什么范围内取值时,这条直线与已知圆:(1)相切,(2)相交,(3)相离,并写出过P点的切线方程.

查看答案和解析>>

科目:高中数学 来源:2012年人教A版高中数学必修二4.2直线、圆的位置关系练习卷(一) 题型:解答题

已知圆x2+y2=8,定点P(4,0),问过P点的直线斜率在什么范围内取值时,这条直线与已知圆(1)相切 ,(2)相交, (3)相离?

 

查看答案和解析>>

同步练习册答案