【题目】在平面直角坐标系中取两个定点,,再取两个动点,,且.
(1)求直线与的交点的轨迹的方程;
(2)过的直线与轨迹交于两点,过点作轴且与轨迹交于另一点,为轨迹的右焦点,若,求证:
科目:高中数学 来源: 题型:
【题目】某校进行了一次创新作文大赛,共有100名同学参赛,经过评判,这100名参赛者的得分都在之间,其得分的频率分布直方图如图,则下列结论错误的是( )
A.得分在之间的共有40人
B.从这100名参赛者中随机选取1人,其得分在的概率为0.5
C.估计得分的众数为55
D.这100名参赛者得分的中位数为65
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某客户考察了一款热销的净水器,使用寿命为十年,改款净水器为三级过滤,每一级过滤都由核心部件滤芯来实现.在使用过程中,一级滤芯需要不定期更换,其中每更换个一级滤芯就需要更换个二级滤芯,三级滤芯无需更换.其中一级滤芯每个元,二级滤芯每个元.记一台净水器在使用期内需要更换的二级滤芯的个数构成的集合为.如图是根据台该款净水器在十年使用期内更换的一级滤芯的个数制成的柱状图.
(1)结合图,写出集合;
(2)根据以上信息,求出一台净水器在使用期内更换二级滤芯的费用大于元的概率(以台净水器更换二级滤芯的频率代替台净水器更换二级滤芯发生的概率);
(3)若在购买净水器的同时购买滤芯,则滤芯可享受折优惠(使用过程中如需再购买无优惠).假设上述台净水器在购机的同时,每台均购买个一级滤芯、个二级滤芯作为备用滤芯(其中,),计算这台净水器在使用期内购买滤芯所需总费用的平均数.并以此作为决策依据,如果客户购买净水器的同时购买备用滤芯的总数也为个,则其中一级滤芯和二级滤芯的个数应分别是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.
(1)写出的普通方程及的直角坐标方程;
(2)设点在上,点在上,求的最小值及此时点的直角坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校举行运动会,其中三级跳远的成绩在米以上的进入决赛,把所得的成绩进行整理后,分成组画出频率分布直方图的一部分(如图),已知第组的频数是.
(1)求进入决赛的人数;
(2)用样本的频率代替概率,记表示两人中进入决赛的人数,求得分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解某校学生参加社区服务的情况,采用按性别分层抽样的方法进行调查.已知该校共有学生960人,其中男生560人,从全校学生中抽取了容量为n的样本,得到一周参加社区服务时间的统计数据如下:
超过1小时 | 不超过1小时 | |
男 | 20 | 8 |
女 | 12 | m |
(1)求m,n;
(2)能否有95%的把握认为该校学生一周参加社区服务时间是否超过1小时与性别有关?
附:
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
K2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《周髀算经》中给出了勾股定理的绝妙证明.如图是赵爽弦图及注文.弦图是一个以勾股形之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成朱色及黄色,其面积称为朱实、黄实.由2×勾×股+(股-勾)2=4×朱实+黄实=弦实,化简得勾2+股2=弦2.若图中勾股形的勾股比为,向弦图内随机抛掷100颗图钉(大小忽略不计),则落在黄色图形内的图钉颗数大约为( )(参考数据:,)
A.2B.4C.6D.8
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知梯形中,,,,四边形为矩形,,平面平面.
(Ⅰ)求证:平面;
(Ⅱ)求平面与平面所成锐二面角的余弦值;
(Ⅲ)在线段上是否存在点,使得直线与平面所成角的正弦值为,若存在,求出线段的长;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知为坐标原点,椭圆:的左、右焦点分别为,.过焦点且垂直于轴的直线与椭圆相交所得的弦长为3,直线与椭圆相切.
(1)求椭圆的标准方程;
(2)是否存在直线:与椭圆相交于两点,使得?若存在,求的取值范围;若不存在,请说明理由!
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com