精英家教网 > 高中数学 > 题目详情
12.曲线C1上任意一点M满足|MF1|+|MF2|=4,其中F1(-$\sqrt{3}$,0),F2($\sqrt{3}$,0)抛物线C2的焦点是直线y=x-1与x轴的交点,顶点为原点O.
(1)求C1,C2的标准方程;
(2)请问是否存在直线l满足条件:①过C2的焦点F;②与C1交于不同两点M,N,且满足$\overrightarrow{OM}$⊥$\overrightarrow{ON}$?若存在,求出直线l的方程;若不存在,说明理由.

分析 (1)由已知得曲线C1是以F1(-$\sqrt{3}$,0),F2($\sqrt{3}$,0)为焦点,以4为实轴的椭圆,抛物线C2的焦点是F(1,0),顶点为原点O.由此能求出求C1,C2的标准方程.
(2)设直线l的方程为y=k(x-1),由$\left\{\begin{array}{l}{y=k(x-1)}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$,得(4k2+1)x2-8k2x+4k2-4=0,由此利用韦达定理结合向量垂直数量积为0的性质能求出直线l的方程.

解答 解:(1)∵曲线C1上任意一点M满足|MF1|+|MF2|=4,其中F1(-$\sqrt{3}$,0),F2($\sqrt{3}$,0),
∴曲线C1是以F1(-$\sqrt{3}$,0),F2($\sqrt{3}$,0)为焦点,以4为实轴的椭圆,
∴a=2,c=$\sqrt{3}$,∴b2=4-3=1,
∴曲线C1的方程为$\frac{{x}^{2}}{4}+{y}^{2}=1$.
∵抛物线C2的焦点是直线y=x-1与x轴的交点,顶点为原点O,
∴抛物线C2的焦点是F(1,0)
∴抛物线C2的标准方程为:y2=4x.…(6分)
(2)假设存在存在直线直线l满足条件:①过C2的焦点F;②与C1交于不同两点M,N,且满足$\overrightarrow{OM}$⊥$\overrightarrow{ON}$,
当直线l的斜率k不存在时,直线l的方程为x=0,不满足条件;
当直线l的斜率k存在时,设直线l的方程为y=k(x-1),
由$\left\{\begin{array}{l}{y=k(x-1)}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$,得(4k2+1)x2-8k2x+4k2-4=0,
设M(x1,y1),N(x2,y2),则${x}_{1}+{x}_{2}=\frac{8{k}^{2}}{4{k}^{2}+1}$,${x}_{1}{x}_{2}=\frac{4{k}^{2}-4}{4{k}^{2}+1}$,
${y}_{1}{y}_{2}={k}^{2}({x}_{1}-1)({x}_{2}-1)$=k2[x1x2-(x1+x2)+1],
∵$\overrightarrow{OM}$⊥$\overrightarrow{ON}$,∴$\overrightarrow{OM}•\overrightarrow{ON}$=x1x2+y1y2=(1+k2)x1x2-k2(x1+x2)+k2
=$(1+{k}^{2})•\frac{4{k}^{2}-4}{4{k}^{2}+1}$-${k}^{2}•\frac{8{k}^{2}}{4{k}^{2}+1}$+k2=0,
解得k=2或k=-2,
∴直线l满足条件,且l的方程为y=2x-2或y=-2x+2.…(13分)

点评 本题考查椭圆、抛物线的标准方程的求法,考查满足条件的直线方程是否存在的判断与求法,是中档题,解题时要注意圆锥曲线的性质和韦达定理、向量垂直的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.化简:$\frac{1+cos2α}{3sin2α}$$•\frac{2si{n}^{2}α}{cos2α}$=(  )
A.tanαB.tan2αC.$\frac{1}{3}$tan2αD.cotα

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设$\overrightarrow{a}$=(cos2θ,sinθ),$\overrightarrow{b}$=(1,0),已知$\overrightarrow{a}$•$\overrightarrow{b}$=$\frac{7}{25}$,且$θ∈(\frac{π}{2},π)$,则tanθ=(  )
A.$-\frac{9}{16}$B.$-\frac{3}{4}$C.$\frac{3}{4}$D.$±\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在三棱锥P-ABC中,PA⊥平面ABC,AB⊥BC,D为侧棱PB的中点,它的正视图和侧视图如图所示,给出下列结论
①AD⊥平面PBC;
②BD⊥平面PAC;
③三棱锥D-ABC的体积为$\frac{16}{3}$;
④三棱锥P-ABC外接球的体积为32$\sqrt{3}$π,其中正确的结论有①④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求椭圆的标准方程
(1)求经过点(2,-3),且与椭圆9x2+4y2=36有共同焦点的椭圆方程.
(2)已知椭圆经过点$(2,-\sqrt{2})$和点$(-1,\frac{{\sqrt{14}}}{2})$,求它的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若A,B两事件互斥,且P(A)=0.3,P(B)=0.6,则P(A+B)=0.9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.有一个球心为O,半径R=2的球,球内有半径r=$\sqrt{3}$的截面圆,截面圆心为A,连接AO并延长交球面于P点,以截面为底,P为顶点,可以做出一个圆锥,则圆锥的体积为3π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知定义在R上的函数f(x)的图象是连续不断的,且有如下对应值表:
x123
f(x)3.42.6-3.7
则函数f(x)一定存在零点的区间是(  )
A.(-∞,1)B.(1,2)C.(2,3)D.(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知向量|$\overrightarrow{a}$|=2,(2$\overrightarrow{a}$-$\overrightarrow{b}$)•($\overrightarrow{a}$+2$\overrightarrow{b}$)=-1,向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为$\frac{2π}{3}$,则|$\overrightarrow{b}$|等于(  )
A.1B.3C.$\frac{3}{2}$D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案