分析 (1)根据$f(\frac{1}{2})=\frac{{\sqrt{2}}}{2}$,求出函数的解析式即可;(2)根据函数单调性的定义证明即可.
解答 (1)解:由${({\frac{1}{2}})^α}=\frac{{\sqrt{2}}}{2}$得,$α=\frac{1}{2}$,
所以$f(x)=\sqrt{x}$;
(2)证明:定义域是[0,+∞),设任意的x2>x1≥0,
则$f({x_2})-f({x_1})=\sqrt{x_2}-\sqrt{x_1}=\frac{{{x_2}-{x_1}}}{{\sqrt{x_2}+\sqrt{x_1}}}$,
∵${x_2}-{x_1}>0,\sqrt{x_2}+\sqrt{x_1}>0$,
∴f(x2)>f(x1),
函数f(x)在定义域上是增函数.
点评 本题考查了求幂函数的解析式问题,考查函数单调性的证明,是一道基础题.
科目:高中数学 来源: 题型:选择题
A. | $\sqrt{5}$ | B. | 2$\sqrt{5}$ | C. | 5 | D. | 10 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -$\frac{28}{75}$ | B. | $\frac{28}{75}$ | C. | -$\frac{56}{75}$ | D. | $\frac{56}{75}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 8 | B. | $\frac{4}{3}$ | C. | $\frac{8}{3}$ | D. | $\frac{10}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | $\frac{1}{3}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | $\frac{\sqrt{6}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com