精英家教网 > 高中数学 > 题目详情
已知函数f(x)满足f(x)=f(-x),且当x∈(-∞,0)时,f(x)+xf′(x)<0成立,若a=(20.1)•f(20.1),b=(ln2)•f(ln2),c=(log2
1
8
)•f(log2
1
8
),则a,b,c的大小关系是(  )
A、a>b>c
B、c>b>a
C、a>c>b
D、c>a>b
考点:利用导数研究函数的单调性,不等式比较大小
专题:导数的综合应用
分析:构造函数h(x)=xf(x),由y=f(x)是R上的偶函数,y=x是R上的奇函数,得h(x)=xf(x)是R上的奇函数,h(x)在(-∞,0)递减,在(0,+∞)递减,得3>20.2>1,0<ln2<1,|log2
1
8
|>20.2>ln2.推出结果.
解答: 解:构造函数h(x)=xf(x),由y=f(x)是R上的偶函数,y=x是R上的奇函数,
得h(x)=xf(x)是R上的奇函数,
又x∈(-∞,0)时,h′(x)=f(x)+xf′(x)<0成立,
∴h(x)在(-∞,0)递减,在(0,+∞)递减,
∵3>20.2>1,0<ln2<1,∴|log2
1
8
|=3>20.2>ln2,
a=(20.1)•f(20.1),b=(ln2)•f(ln2),c=(log2
1
8
)•f(log2
1
8

即b>a>c,
故选:D.
点评:本题考查了函数的单调性,导数的应用,函数的奇偶性,是一道综合题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)=
2x-2,x≤2
lo
g
x-1
2
,x>2
,则f(f(5))=(  )
A、-1B、1C、-2D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

若x,y∈(0,+∞),x+2y+xy=30.求xy,x+y的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为[-1,5],部分对应值如下表,f(x)的导函数y=f′(x)的图象如图所示.下列关于f(x)的命题:
x-1045
f(x)1221
①函数f(x)的极大值点为0,4;
②函数f(x)在[0,2]上是减函数;
③如果当x∈[-1,t]时,f(x)的最大值是2,那么t的最大值为4;
④当1<a<2时,函数y=f(x)-a有4个零点.
其中正确命题的个数有
 
 个.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:椭圆C1
x2
4
+
y2
1
=1,椭圆C2
y2
8
+
x2
2
=1,则在这两个椭圆的a、b、c、e四个量中,相同的量是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一个对数函数y=f(x)的图象过点(9,2);
(1)求f(x)的解析式
(2)若x>0且满足f(x)>1,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

作出函数y=x
1
3
的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=loga(2-ax)在(0,4)上为增函数,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)的右焦点F2与抛物线y2=4
3
x的焦点重合,过F2作与x轴垂直的直线与椭圆交于S、T两点,与抛物线交于C、D两点,且
|CD|
|ST|
=4
3

(Ⅰ)求椭圆E的方程;
(Ⅱ)若过点M(3,0)的直线l与椭圆E交于两点A、B,设P为椭圆上一点,且满足
OA
+
OB
=t
OP
(O为坐标原点),求实数t的取值范围.

查看答案和解析>>

同步练习册答案