【题目】已知函数,,曲线在处的切线方程为.
(1)求的解析式;
(2)当时,求证:;
(3)若对任意的恒成立,则实数的取值范围.
【答案】(1)(2)见解析(3)
【解析】
(1)由题意利用导函数与原函数的关系得到关于a,b的方程组,求解方程组即可确定函数的解析式;
(2)构造函数φ(x)=f(x)+x2-x=ex-x-1,利用导函数的性质确定其最小值即可证得题中的不等式;
(3)将原问题转化为≥k对任意的x∈(0,+∞)恒成立,然后构造函数结合(2)中的结论求解实数k的取值范围即可.
(1)f(x)=ex-x2+a,f'(x)=ex-2x.
由已知,f(x)=ex-x2-1.
(2)令φ(x)=f(x)+x2-x=ex-x-1,φ'(x)=ex-1,由φ'(x)=0,得x=0,
当x∈(-∞,0)时,φ'(x)<0,φ(x)单调递减;
当x∈(0,+∞)时,φ'(x)>0,φ(x)单调递增.
∴φ(x)min=φ(0)=0,从而f(x)≥-x2+x.
(3)f(x)>kx对任意的x∈(0,+∞)恒成立
≥k对任意的x∈(0,+∞)恒成立,
令g(x)=,x>0,
∴g′(x)=,
由(2)可知当x∈(0,+∞)时,ex-x-1>0恒成立,
令g'(x)>0,得x>1;g'(x)<0,得0<x<1.
∴g(x)的增区间为(1,+∞),减区间为(0,1).g(x)min=g(1)=0.
∴k≤g(x)min=g(1)=e-2,∴实数k的取值范围为(-∞,e-2].
科目:高中数学 来源: 题型:
【题目】某二手交易市场对某型号的二手汽车的使用年数()与销售价格(单位:万元/辆)进行整理,得到如下的对应数据:
使用年数 | 2 | 4 | 6 | 8 | 10 |
销售价格 | 16 | 13 | 9.5 | 7 | 4.5 |
(I)试求关于的回归直线方程.
(参考公式:,)
(II)已知每辆该型号汽车的收购价格为万元,根据(I)中所求的回归方程,预测为何值时,销售一辆该型号汽车所获得的利润最大?(利润=销售价格-收购价格)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线的参数方程为(为参数).在以原点为极点,轴正半轴为极轴的极坐标系中,曲线的极坐标方程为.
(1)求直线的极坐标方程和曲线的直角坐标方程;
(2)若直线与曲线交于两点,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《中华人民共和国道路交通安全法》第47条规定:机动车行经人行横道时,应当减速慢行;遇到行人正在通过人行横道,应当停车让行,俗称“礼让斑马线”.下表是某十字路口监控设备所抓拍的6个月内驾驶员不“礼让斑马线”行为的统计数据:
月份 | 1 | 2 | 3 | 4 | 5 | 6 |
不“礼让斑马线”驾驶员人数 | 120 | 105 | 100 | 85 | 90 | 80 |
(Ⅰ)请根据表中所给前5个月的数据,求不“礼让斑马线”的驾驶员人数与月份之间的回归直线方程;
(Ⅱ)若该十字路口某月不“礼让斑马线”驾驶员人数的实际人数与预测人数之差小于5,则称该十字路口“礼让斑马线”情况达到“理想状态”.试根据(Ⅰ)中的回归直线方程,判断6月份该十字路口“礼让斑马线”情况是否达到“理想状态”?
(Ⅲ)若从表中3、4月份分别选取4人和2人,再从所选取的6人中任意抽取2人进行交规调查,求抽取的两人恰好来自同一月份的概率.
参考公式: ,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数u(x)=xlnx,v(x)x﹣1,m∈R.
(1)令m=2,求函数h(x)的单调区间;
(2)令f(x)=u(x)﹣v(x),若函数f(x)恰有两个极值点x1,x2,且满足1e(e为自然对数的底数)求x1x2的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的右焦点为,点为椭圆上的动点,若的最大值和最小值分别为和.
(I)求椭圆的方程
(Ⅱ)设不过原点的直线与椭圆 交于两点,若直线的斜率依次成等比数列,求面积的最大值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】哈师大附中高三学年统计甲、乙两个班级一模数学分数(满分150分),每个班级20名同学,现有甲、乙两位同学的20次成绩如下列茎叶图所示:
(I)根据基叶图求甲、乙两位同学成绩的中位数,并将乙同学的成绩的频率分布直方图填充完整;
(Ⅱ)根据基叶图比较甲乙两位同学数学成绩的平均值及稳定程度(不要求计算出具体值,给出结论即可)
(Ⅲ)现从甲乙两位同学的不低于140分的成绩中任意选出2个成绩,设事件为“其中2 个成绩分别属于不同的同学”,求事件发生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,已知点,直线:(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,直线和曲线的交点为,.
(1)求直线和曲线的普通方程;
(2)求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)对于实数,,若,有,求证:方程有两个不相等的实数根;
(2)若,函数,求函数在区间上的最大值和最小值;
(3)若存在实数,使得对于任意实数,都有,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com