精英家教网 > 高中数学 > 题目详情

【题目】已知函数,曲线处的切线方程为.

(1)求的解析式;

(2)当时,求证:

(3)若对任意的恒成立,则实数的取值范围.

【答案】(1)(2)见解析(3)

【解析】

(1)由题意利用导函数与原函数的关系得到关于a,b的方程组,求解方程组即可确定函数的解析式;

(2)构造函数φx)=fx)+x2-x=ex-x-1,利用导函数的性质确定其最小值即可证得题中的不等式;

(3)将原问题转化为k对任意的x(0,+∞)恒成立,然后构造函数结合(2)中的结论求解实数k的取值范围即可.

(1)fx)=ex-x2+af'(x)=ex-2x

由已知fx)=ex-x2-1.

(2)令φx)=fx)+x2-x=ex-x-1,φ'(x)=ex-1,由φ'(x)=0,得x=0,

x(-∞,0)时,φ'(x)<0,φx)单调递减;

x(0,+∞)时,φ'(x)>0,φx)单调递增.

φxmin=φ(0)=0,从而fx)≥-x2+x

(3)fx)>kx对任意的x(0,+∞)恒成立

k对任意的x(0,+∞)恒成立,

gx)=x>0,

g′(x)=

由(2)可知当x(0,+∞)时,ex-x-1>0恒成立,

g'(x)>0,得x>1;g'(x)<0,得0<x<1.

gx)的增区间为(1,+∞),减区间为(0,1).gxmin=g(1)=0.

kgxmin=g(1)=e-2,∴实数k的取值范围为(-∞,e-2].

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某二手交易市场对某型号的二手汽车的使用年数)与销售价格(单位:万元/辆)进行整理,得到如下的对应数据:

使用年数

2

4

6

8

10

销售价格

16

13

9.5

7

4.5

(I)试求关于的回归直线方程.

(参考公式:

(II)已知每辆该型号汽车的收购价格为万元,根据(I)中所求的回归方程,预测为何值时,销售一辆该型号汽车所获得的利润最大?(利润=销售价格-收购价格)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数).在以原点为极点,轴正半轴为极轴的极坐标系中,曲线的极坐标方程为.

(1)求直线的极坐标方程和曲线的直角坐标方程;

(2)若直线与曲线交于两点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《中华人民共和国道路交通安全法》第47条规定:机动车行经人行横道时,应当减速慢行;遇到行人正在通过人行横道,应当停车让行,俗称“礼让斑马线”.下表是某十字路口监控设备所抓拍的6个月内驾驶员不“礼让斑马线”行为的统计数据:

月份

1

2

3

4

5

6

不“礼让斑马线”驾驶员人数

120

105

100

85

90

80

(Ⅰ)请根据表中所给前5个月的数据,求不“礼让斑马线”的驾驶员人数与月份之间的回归直线方程

(Ⅱ)若该十字路口某月不“礼让斑马线”驾驶员人数的实际人数与预测人数之差小于5,则称该十字路口“礼让斑马线”情况达到“理想状态”.试根据(Ⅰ)中的回归直线方程,判断6月份该十字路口“礼让斑马线”情况是否达到“理想状态”?

(Ⅲ)若从表中3、4月份分别选取4人和2人,再从所选取的6人中任意抽取2人进行交规调查,求抽取的两人恰好来自同一月份的概率.

参考公式: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数u(x)=xlnx,v(x)x﹣1,m∈R.

(1)令m=2,求函数h(x)的单调区间;

(2)令f(x)=u(x)﹣v(x),若函数f(x)恰有两个极值点x1,x2,且满足1e(e为自然对数的底数)求x1x2的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,点为椭圆上的动点,若的最大值和最小值分别为.

(I)求椭圆的方程

(Ⅱ)设不过原点的直线与椭圆 交于两点,若直线的斜率依次成等比数列,求面积的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】哈师大附中高三学年统计甲、乙两个班级一模数学分数(满分150分),每个班级20名同学,现有甲、乙两位同学的20次成绩如下列茎叶图所示:

(I)根据基叶图求甲、乙两位同学成绩的中位数,并将乙同学的成绩的频率分布直方图填充完整;

(Ⅱ)根据基叶图比较甲乙两位同学数学成绩的平均值及稳定程度(不要求计算出具体值,给出结论即可)

(Ⅲ)现从甲乙两位同学的不低于140分的成绩中任意选出2个成绩,设事件为“其中2 个成绩分别属于不同的同学”,求事件发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,已知点,直线:为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,直线和曲线的交点为

(1)求直线和曲线的普通方程;

(2)求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)对于实数,若,有,求证:方程有两个不相等的实数根;

2)若,函数,求函数在区间上的最大值和最小值;

3)若存在实数,使得对于任意实数,都有,求实数的取值范围.

查看答案和解析>>

同步练习册答案