精英家教网 > 高中数学 > 题目详情
14.已知两圆C1:(x-1)2+y2=9.C2:(x+1)2+y2=1,动圆在圆C1内部且与圆C1相内切,与圆C2向外切
(1)求动圆圆心C的轨迹方程;
(2)已知A(-2,0),过A作斜率分别为k1,k2的两条直线交曲线C于D,E两点,且k1•k2=2,求证:直线DE过定点,并求出该定点的坐标.

分析 (1)根据几何关系得CC1+CC2=4(定值),再根据椭圆定义得出轨迹方程;
(2)采用了“先猜后证”的方法确定直线DE所过的定点.

解答 解:(1)设动圆C的半径为r,根据几何关系,
动圆C与圆C1内切,所以r=3-CC1
动圆C与圆C2外切,所以r=CC2-1,
所以,3-CC1=CC2-1,即CC1+CC2=4(定值),
因此,点P的轨迹为椭圆,且a=2,c=1,b=$\sqrt{3}$,
所以,圆心C的轨迹方程为:$\frac{x^2}{4}+\frac{y^2}{3}=1$(x≠-2);
(2)因为点A(-2,0)在x轴上,根据对称性可知,直线DE所过的定点必在x轴上,
因此,可采取先猜后证的方法确定直线DE必过定点,
当点D,E两点无限接近时,直线DE趋于切线,此时k1,k2都趋于$\sqrt{2}$(或-$\sqrt{2}$),
故可设lAE:y=$\sqrt{2}$(x+2),代入椭圆解得D(-$\frac{10}{11}$,$\frac{12\sqrt{2}}{11}$),
且点D处切线斜率k=-$\frac{b^2{x}_{D}}{a^2{y}_{D}}$=$\frac{5\sqrt{2}}{16}$,
因此,椭圆在点D处的切线方程为:y-$\frac{12\sqrt{2}}{11}$=$\frac{5\sqrt{2}}{16}$(x+$\frac{10}{11}$),
令y=0,解得x=-$\frac{22}{5}$,由此可猜测:直线DE恒过定点P(-$\frac{22}{5}$,0),证明如下:
设D(x1,y1),E(x2,y2),过点P的直线为:x=my-$\frac{22}{5}$,联立椭圆方程得,
25(3m2+4)y2-660my+1152=0,
所以,y1+y2=$\frac{660m}{25(3m^2+4)}$,y1y2=$\frac{1152}{25(3m^2+4)}$,
因此,k1•k2=$\frac{{y}_{1}}{{x}_{1}+2}$•$\frac{{y}_{2}}{{x}_{2}+2}$=$\frac{{y}_{1}{y}_{2}}{(m{y}_{1}-\frac{12}{5})(m{y}_{2}-\frac{12}{5})}$
=$\frac{25{y}_{1}{y}_{2}}{25m^2{y}_{1}{y}_{2}-60m({y}_{1}+{y}_{2})+144}$
=$\frac{1152}{1152m^2-12×132m^2+144(3m^2+4)}$=$\frac{1152}{576}$=2(定值),符合题意,
因此,直线DE恒过定点(-$\frac{22}{5}$,0).

点评 本题主要考查了运用椭圆的定义求轨迹方恒,以及直线与椭圆相交问题转化为方程联立得到根与系数的关系、斜率计算公式、直线过定点问题,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知lg2=0.3010,由此可以推断22015是(  )位整数.
A.605B.606C.607D.608

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=x2-2x+8在[a,a+1]具有单调性,则实数a的取值范围是(  )
A.0≤a≤1B.-1≤a≤0C.a≤0或a≥1D.a≤-1或a≥0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.数列{an}中,a1=1,an+1+an=(-2)n,Sn是数列{an}的前n项和,则S6=(  )
A.-62B.62C.-42D.42

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在直角梯形ABCD中,AD∥BC,AB⊥BC,AB=AD=1,BC=2,现将△ABD沿BD折起后使AC=$\sqrt{3}$,在四面体ABCD四个面中两两构成直二面角的个数为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某产品整箱出售,每一箱中20件产品,若各箱中次品数为0件,1件,2件的概率分别为80%,10%,10%,现在从中任取-箱,顾客随意抽查4件,如果无次品,则买下该箱产品,如果有次品,则退货.
(1)求顾客买下该箱产品的概率;
(2)求在顾客买下的一箱产品中,确实无次品的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知直线x+2y-3=0与圆x2+y2+x-2cy+c=0的两个交点为A,B,O为坐标原点,且OA⊥OB,求实数c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.当x∈(0,2)时,求函数f(x)=ex-ex的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}满足a1=3,an+1=2an-n+1(n∈N*).
(1)若bn=an-n(n∈N*),求证数列{bn}成等比数列;
(2)设数列{an}的前n项之和为Sn,求Sn

查看答案和解析>>

同步练习册答案