(2009年上海卷理)(本题满分18分)本题共有3个小题,第1小题满分5分,第2小题满分5分,第3小题满分8分。
已知是公差为的等差数列,是公比为的等比数列。
若,是否存在,有说明理由;
找出所有数列和,使对一切,,并说明理由;
若试确定所有的,使数列中存在某个连续项的和是数列中的一项,请证明。
[解法一](1)由,得, ......2分
整理后,可得,、,为整数,
不存在、,使等式成立。 ......5分
(2)若,即, (*)
(ⅰ)若则。
当{}为非零常数列,{}为恒等于1的常数列,满足要求。 ......7分
(ⅱ)若,(*)式等号左边取极限得,(*)式等号右边的极限只有当时,才能等于1。此时等号左边是常数,,矛盾。
综上所述,只有当{}为非零常数列,{}为恒等于1的常数列,满足要求。......10分
【解法二】设
则
若d=0,则
若(常数)即,则d=0,矛盾
综上所述,有, 10分
(3)
设.
,
. 13分
取 15分
由二项展开式可得正整数M1、M2,使得(4-1)2s+2=4M1+1,
故当且仅当p=3s,sN时,命题成立. .
说明:第(3)题若学生从以下角度解题,可分别得部分分(即分步得分)
若p为偶数,则am+1+am+2+……+am+p为偶数,但3k为奇数
故此等式不成立,所以,p一定为奇数。
当p=1时,则am+1=bk,即4m+5=3k,
而3k=(4-1)k
=
当k为偶数时,存在m,使4m+5=3k成立 1分
当p=3时,则am+1+am+2+am+3=bk,即3am+2-bk,
也即3(4m+9)=3k,所以4m+9=3k-1,4(m+1)+5=3k-1
由已证可知,当k-1为偶数即k为奇数时,存在m, 4m+9=3k成立 2分
当p=5时,则am+1+am+2+……+am+5=bk,即5am+3=bk
也即5(4m+13)=3k,而3k不是5的倍数,所以,当p=5时,所要求的m不存在
故不是所有奇数都成立. 2分
科目:高中数学 来源: 题型:
.(2009年上海卷理)如图,若正四棱柱的底面连长为2,高 为4,则异面直线与AD所成角的大小是______________(结果用反三角函数表示).
查看答案和解析>>
科目:高中数学 来源: 题型:
.(2009年上海卷理)如图,若正四棱柱的底面连长为2,高 为4,则异面直线与AD所成角的大小是______________(结果用反三角函数表示).
查看答案和解析>>
科目:高中数学 来源:2010届高三数学每周精析精练:概率 题型:填空题
(2009年上海卷理)某学校要从5名男生和2名女生中选出2人作为上海世博会志愿者,若用随机变量表示选出的志愿者中女生的人数,则数学期望____________(结果用最简分数表示).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com