精英家教网 > 高中数学 > 题目详情
18.已知复数z1=1-i,z1z2=1+i,则z2=(  )
A.iB.-iC.1+iD.1-i

分析 把z1=1-i代入z1z2=1+i,然后利用复数代数形式的乘除运算化简得答案.

解答 解:∵数z1=1-i,z1z2=1+i,
∴${z}_{2}=\frac{1+i}{{z}_{1}}=\frac{1+i}{1-i}=\frac{(1+i)^{2}}{(1-i)(1+i)}=\frac{2i}{2}=i$.
故选:A.

点评 本题考查复数代数形式的乘除运算,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.下列命题中,既是真命题又是特称命题的是(  )
A.有一个α,使tan(90°-α)=$\frac{1}{tanα}$
B.存在实数x,使sinx=$\frac{π}{2}$
C.对一切α,sin(180°-α)=sinα
D.sin15°=sin60°cos45°-cos60°sin45°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.【理】已知抛物线的方程为x2=2py(p>0),过点A(0,-1)作直线l与抛物线相交于P,Q两点,点B的坐标为(0,1),连接BP,BQ,设BQ,BP与x轴分别相交于M,N两点.如果QB的斜率与PB的斜率的乘积为-3,则∠MBN的大小等于(  )
A.$\frac{π}{2}$B.$\frac{π}{4}$C.$\frac{π}{6}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知:a>0,b>0,不等式$a>\frac{1}{x}>-b$的解集是(  )
A.$\left\{{x\left|{-\frac{1}{b}<x}\right.<0或0<x<\frac{1}{a}}\right\}$B.$\left\{{x\left|{-\frac{1}{a}<x}\right.<0或0<x<\frac{1}{b}}\right\}$
C.$\left\{{x\left|{x<-\frac{1}{b}}\right.或x>\frac{1}{a}}\right\}$D.$\left\{{x\left|{-\frac{1}{a}<x}\right.<\frac{1}{b}}\right\}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,角α的始边与x轴的非负半轴重合,终边与单位圆交于点A,直线MA垂直x轴于点M,B是直线y=x与MA的交点,设f(α)=$\overrightarrow{OA}•\overrightarrow{OB}$.
(1)求f(α)的解析式;
(2)若f(α)=$\frac{3}{5}$,求tanα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.4个男生与3个女生站成一排,如果两端不站女生且3个女生必须相邻的排法有(  )
A.144种B.288种C.432种D.576种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知两个等差数列{an}和{bn}的前n项和分别记为Sn和Tn,若$\frac{S_n}{T_n}=\frac{2n+1}{n+3}$,则$\frac{a_9}{b_9}$=(  )
A.$\frac{7}{4}$B.$\frac{3}{5}$C.$\frac{37}{21}$D.$\frac{19}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知在△ABC中,cosA=-$\frac{5}{13}$,cosB=$\frac{3}{5}$.
(Ⅰ)求sinC的值;
(Ⅱ)设△ABC的面积S△ABC=$\frac{32}{5}$,求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在等差数列{an}中,若a1+a2+a3=32,a11+a12+a13=118,则a4+a10=(  )
A.45B.50C.75D.60

查看答案和解析>>

同步练习册答案