精英家教网 > 高中数学 > 题目详情

【题目】已知实数,函数,函数.

(Ⅰ)令,当时,试讨论函数在其定义域内的单调性;

(Ⅱ)当时,令,是否存在实数,使得对于函数定义域中的任意实数,均存在实数,有成立?若存在,求出实数的取值集合;若不存在,请说明理由.

【答案】(Ⅰ)见详解(Ⅱ)

【解析】分析:(Ⅰ)求导,讨论参数的大小,进而研究函数的定义域和导数的符号变化,再确定函数的单调性(Ⅱ)构造函数,讨论的范围和的大小关系,将问题转化为求函数的最值问题,再利用导数的符号变化确定函数的单调性,进而确定函数的最值.

详解:(Ⅰ)

1. ,此时函数的定义域为故函数内单调递增, 内单调递减.

2. ,

此时函数的定义域为

,此时恒成立.

函数内单调递增,在内单调递减.

综上时,函数内单调递增,在内单调递减;当时,函数内单调递增, 内单调递减.

(Ⅱ)当假设存在实数满足条件

上恒成立.

1.

可化为

问题转化为:对任意恒成立(*);

(1) 因为

所以函数时单调递减

从而函数时单调递增

所以(*)成立满足题意;

(2)

因为所以则当

所以函数时单调递增

从而函数时单调递减所以此时(*)不成立;

所以当恒成立时

2.

可化为

问题转化为:对任意的恒成立(**);

(1)所以函数时单调递增

从而函数时单调递增所以,此时(**)成立;

(2)

①若必有故函数上单调递减

所以

从而函数时单调递减所以此时(**)不成立;

② 若所以

故函数上单调递减

所以函数时单调递减,所以此时(**)不成立;

所以当恒成立时.

综上所述恒成立时

从而实数的取值集合为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】几位大学生响应国家的创业号召,开发了三款软件,为激发大家学习数学的兴趣,他们推出了解数学题获取软件激活码的活动,这三款软件的激活码分别为下面数学问题的三个答案:已知数列,其中第一项是,接下来的两项是,再接下来的三项是,以此类推,试根据下列条件求出三款软件的激活码

1A款应用软件的激活码是该数列中第四个三位数的项数的平方

2B款应用软件的激活码是该数列中第一个四位数及其前所有项的和

3C款应用软件的激活码是满足如下条件的最小整数:①;②该数列的前项和为2的整数幂

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国2019年新年贺岁大片《流浪地球》自上映以来引发了社会的广泛关注,受到了观众的普遍好评.假设男性观众认为《流浪地球》好看的概率为,女性观众认为《流浪地球》好看的概率为.某机构就《流浪地球》是否好看的问题随机采访了4名观众(其中2男2女).

(1)求这4名观众中女性认为好看的人数比男性认为好看的人数多的概率;

(2)设表示这4名观众中认为《流浪地球》好看的人数,求的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2017高考新课标Ⅲ19)如图,四面体ABCD中,ABC是正三角形,ACD是直角三角形,∠ABD=CBDAB=BD.

(1)证明:平面ACD⊥平面ABC

(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角DAEC的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥中,底面是矩形,平面,AB 1,AP AD 2.

(1)求直线与平面所成角的正弦值;

(2)若点M,N分别在AB,PC上,且平面,试确定点M,N的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以椭圆的离心率为,以其四个顶点为顶点的四边形的面积等于

1求椭圆的标准方程;

2过原点且斜率不为0的直线与椭圆交于两点,是椭圆的右顶点,直线分别与轴交于点,问:以为直径的圆是否恒过轴上的定点?若恒过轴上的定点,请求出该定点的坐标;若不恒过轴上的定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,底面ABCD是边长为6的菱形,且平面ABCDF是棱PA上的一个动点,EPD的中点.

求证:

PC与平面BDF所成角的正弦值;

侧面PAD内是否存在过点E的一条直线,使得该直线上任一点MC的连线,都满足平面BDF,若存在,求出此直线被直线PAPD所截线段的长度,若不存在,请明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在矩形ABCD中,AB4AD2ECD的中点,将△ADE沿AE折起,得到如图2所示的四棱锥D1ABCE,其中平面D1AE⊥平面ABCE.

(1)证明:BE⊥平面D1AE

(2)FCD1的中点,在线段AB上是否存在一点M,使得MF∥平面D1AE,若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线C的方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为

(1)求曲线C的参数方程和直线的直角坐标方程;

(2)若直线轴和y轴分别交于AB两点,P为曲线C上的动点,求PAB面积的最大值.

查看答案和解析>>

同步练习册答案