精英家教网 > 高中数学 > 题目详情

【题目】已知两点,点P是椭圆上任意一点,则点P到直线AB的距离最大值为( )

A. B. C. 6D.

【答案】B

【解析】

先求出直线AB的方程,然后结合图形,将点到直线的的最大距离转化为求与直线AB平行且与椭圆相切的直线与直线AB的最大距离,再利用两平行线间的距离求出即可

由两点A(-1,0),B(0,1),则直线AB的方程为y=x+1,

由图可知,直线y=x+m(m<0)和椭圆相切于P点时,到AB的距离最大.

联立方程得整理得25x2+32mx+16m2-144=0

由于直线y=x+m和椭圆相切,则△=(32m)2-4×25×(16m2-144)=0,解得m= -5m=5(舍去)

由于y=x+1与直线y=x-5的距离为

则点P到直线AB距离的最大值为

故选B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线l经过抛物线y2=6x的焦点F,且与抛物线相交于AB两点.

(1)若直线l的倾斜角为60°,求|AB|的值;

(2)|AB|=9,求线段AB的中点M到准线的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义行列式运算 =a1b2﹣a2b1 , 将函数f(x)= 的图象向左平移t(t>0)个单位,所得图象对应的函数为偶函数,则t的最小值为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的函数f(x)满足:f′(x)﹣f(x)=xex , 且f(0)= ,则 的最大值为(
A.0
B.
C.1
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=xex
(1)求f(x)的极值;
(2)k×f(x)≥ x2+x在[﹣1,+∞)上恒成立,求k值的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,过右焦点作垂直于椭圆长轴的直线交椭圆于两点,且为坐标原点.

(1)求椭圆的方程;

(2) 设直线与椭圆相交于两点,若.

①求的值;

②求的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本市某玩具生产公司根据市场调查分析,决定调整产品生产方案,准备每天生产 三种玩具共100个,且种玩具至少生产20个,每天生产时间不超过10小时,已知生产这些玩具每个所需工时(分钟)和所获利润如表:

玩具名称

工时(分钟)

5

7

4

利润(元)

5

6

3

(Ⅰ)用每天生产种玩具个数种玩具表示每天的利润(元);

(Ⅱ)怎样分配生产任务才能使每天的利润最大,最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= x2+(a+1)x+2ln(x﹣1).
(1)若曲线y=f(x)在点(2,f(2))处的切线与直线2x﹣y+1=0平行,求出这条切线的方程;
(2)讨论函数f(x)的单调区间;
(3)若对于任意的x∈(1,+∞),都有f(x)<﹣2,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,将的图象向右平移两个单位长度,得到函数的图象.

(1)求函数的解析式;

(2)若方程上有且仅有一个实根,求的取值范围;

(3)若函数的图象关于直线对称,设,已知对任意的恒成立,求的取值范围.

查看答案和解析>>

同步练习册答案