【题目】已知两点,点P是椭圆上任意一点,则点P到直线AB的距离最大值为( )
A. B. C. 6D.
科目:高中数学 来源: 题型:
【题目】已知直线l经过抛物线y2=6x的焦点F,且与抛物线相交于A,B两点.
(1)若直线l的倾斜角为60°,求|AB|的值;
(2)若|AB|=9,求线段AB的中点M到准线的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义行列式运算 =a1b2﹣a2b1 , 将函数f(x)= 的图象向左平移t(t>0)个单位,所得图象对应的函数为偶函数,则t的最小值为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,过右焦点作垂直于椭圆长轴的直线交椭圆于两点,且为坐标原点.
(1)求椭圆的方程;
(2) 设直线与椭圆相交于两点,若.
①求的值;
②求的面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】本市某玩具生产公司根据市场调查分析,决定调整产品生产方案,准备每天生产, , 三种玩具共100个,且种玩具至少生产20个,每天生产时间不超过10小时,已知生产这些玩具每个所需工时(分钟)和所获利润如表:
玩具名称 | |||
工时(分钟) | 5 | 7 | 4 |
利润(元) | 5 | 6 | 3 |
(Ⅰ)用每天生产种玩具个数与种玩具表示每天的利润(元);
(Ⅱ)怎样分配生产任务才能使每天的利润最大,最大利润是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= x2+(a+1)x+2ln(x﹣1).
(1)若曲线y=f(x)在点(2,f(2))处的切线与直线2x﹣y+1=0平行,求出这条切线的方程;
(2)讨论函数f(x)的单调区间;
(3)若对于任意的x∈(1,+∞),都有f(x)<﹣2,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,将的图象向右平移两个单位长度,得到函数的图象.
(1)求函数的解析式;
(2)若方程在上有且仅有一个实根,求的取值范围;
(3)若函数与的图象关于直线对称,设,已知对任意的恒成立,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com